Algebraic independence of certain almost polyadic series
Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 339-354
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the arithmetic properties of almost polyadic numbers $$\sum_{n=1}^\infty a_{i}\left(a_{i}+b_{i}\right)\ldots\left(a_{i}+\left(n-1\right)b_{i}\right),i=1,...,m,$$ where the numbers $a_{i},b_{i}\in\mathbb Z$, $\left(a_{i},b_{i}\right)=1$.
Bibliography: 15 titles.
Keywords:
almost polyadic numbers.
@article{CHEB_2015_16_3_a16,
author = {V. Yu. Matveev},
title = {Algebraic independence of certain almost polyadic series},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {339--354},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a16/}
}
V. Yu. Matveev. Algebraic independence of certain almost polyadic series. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 339-354. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a16/