Algebraic independence of certain almost polyadic series
Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 339-354

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the arithmetic properties of almost polyadic numbers $$\sum_{n=1}^\infty a_{i}\left(a_{i}+b_{i}\right)\ldots\left(a_{i}+\left(n-1\right)b_{i}\right),i=1,...,m,$$ where the numbers $a_{i},b_{i}\in\mathbb Z$, $\left(a_{i},b_{i}\right)=1$. Bibliography: 15 titles.
Keywords: almost polyadic numbers.
@article{CHEB_2015_16_3_a16,
     author = {V. Yu. Matveev},
     title = {Algebraic independence of certain almost polyadic series},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {339--354},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a16/}
}
TY  - JOUR
AU  - V. Yu. Matveev
TI  - Algebraic independence of certain almost polyadic series
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 339
EP  - 354
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a16/
LA  - ru
ID  - CHEB_2015_16_3_a16
ER  - 
%0 Journal Article
%A V. Yu. Matveev
%T Algebraic independence of certain almost polyadic series
%J Čebyševskij sbornik
%D 2015
%P 339-354
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a16/
%G ru
%F CHEB_2015_16_3_a16
V. Yu. Matveev. Algebraic independence of certain almost polyadic series. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 339-354. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a16/