Algebraic independence of certain almost polyadic series
Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 339-354.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the arithmetic properties of almost polyadic numbers $$\sum_{n=1}^\infty a_{i}\left(a_{i}+b_{i}\right)\ldots\left(a_{i}+\left(n-1\right)b_{i}\right),i=1,...,m,$$ where the numbers $a_{i},b_{i}\in\mathbb Z$, $\left(a_{i},b_{i}\right)=1$. Bibliography: 15 titles.
Keywords: almost polyadic numbers.
@article{CHEB_2015_16_3_a16,
     author = {V. Yu. Matveev},
     title = {Algebraic independence of certain almost polyadic series},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {339--354},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a16/}
}
TY  - JOUR
AU  - V. Yu. Matveev
TI  - Algebraic independence of certain almost polyadic series
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 339
EP  - 354
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a16/
LA  - ru
ID  - CHEB_2015_16_3_a16
ER  - 
%0 Journal Article
%A V. Yu. Matveev
%T Algebraic independence of certain almost polyadic series
%J Čebyševskij sbornik
%D 2015
%P 339-354
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a16/
%G ru
%F CHEB_2015_16_3_a16
V. Yu. Matveev. Algebraic independence of certain almost polyadic series. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 339-354. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a16/

[1] Chirskii V. G., “The arithmetic properties of polyadic series with periodic coefficients”, Dokl. Akad. Nauk, 439:6 (2014), 677–679 (in Russian) | DOI

[2] Bertrand D., Chirskii V. G., Yebbou Y., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse Math. (6), 13:2 (2004), 241–260 | DOI | MR | Zbl

[3] Chirskii V. G., “The arithmetic properties of polyadic integers”, Chebyshevskii Sb., 16:1 (2015), 254–264 (in Russian)

[4] Shidlovskii A. B., Transcendental numbers, Nauka, M., 1987, 448 pp. (in Russian) | MR

[5] Salihov V. H., “The algebraic independence of the values of E-functions that satisfy first order linear differential equations”, Mat. Zametki, 13:1 (1973), 29–40 (in Russian) | MR

[6] Chirskii V. G., “Global relations”, Math. Notes, 48:1–2 (1990), 795–798 | DOI | MR | Zbl

[7] Nesterenko Yu. V., “Pade–Hermite approximants of generalized hypergeometric functions”, Russian Acad. Sci. Sb. Math., 83:1 (1995), 189–219 | MR | Zbl

[8] Chirskii V. G., “On the arithmetic properties of Euler's series”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 2015, no. 1, 59–61 (in Russian)

[9] Postnikov A. G., Introduction to analytic number theory, Nauka, M., 1971, 416 pp. (in Russian) | MR

[10] Pontryagin L. S., Continuous groups, Fourth edition, Nauka, M., 1984, 520 pp. (in Russian) | MR

[11] Novoselov E. V., “The topological theory of divisibility of integers”, Scientists. Rec. Elabuzh. state. ped. Inst., 1960, no. 3, 3–23 (in Russian)

[12] Chirskii V. G., Shakirov R. F., “On the representation of positive integers using a number system of several bases”, Chebyshevskii Sb., 14:1 (2013), 86–93 (in Russian) | MR

[13] Dimitrov V. S., Jullien G. A., Miller W. C., “An Algorithm for Modular Exponentiation”, Inform. Process. Lett., 66:3 (1998), 155–159 | DOI | MR | Zbl

[14] Matveev V. Yu., Chirskii V. G., “On series of product by members of the arithmetic progression”, Teacher XXI Century, 2013, no. 4/2, 249–254 (in Russian)

[15] Matveev V. Yu., “The values of a certain series of points in polyadic, closely approximated the natural numbers”, Teacher XXI Century, 2013, no. 4/2, 255–259 (in Russian)