One construction of integral representations of $p$-groups and some applications
Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 322-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some well-known classical results related to the description of integral representations of finite groups over Dedekind rings $R$, especially for the rings of integers $\mathbf{Z}$ and $p$-adic integers $\mathbf{Z}_p$ and maximal orders of local fields and fields of algebraic numbers go back to classical papers by S. S. Ryshkov, P. M. Gudivok, A. V. Roiter, A. V. Yakovlev, W. Plesken. For giving an explicit description it is important to find matrix realizations of the representations, and one of the possible approaches is to describe maximal finite subgroups of $GL_n(R)$ over Dedekind rings $R$ for a fixed positive integer $n$. The basic idea underlying a geometric approach was given in Ryshkov’s papers on the computation of the finite subgroups of $GL_n(\mathbf{Z})$ and further works by W. Plesken and M. Pohst. However, it was not clear, what happens under the extension of the Dedekind rings $R$ in general, and in what way the representations of arbitrary $p $-groups, supersolvable groups or groups of a given nilpotency class can be approached. In the present paper the above classes of groups are treated, in particular, it is proven that for a fixed $n$ and any given nonabelian $p$-group $G$ there is an infinite number of pairwise non-isomorphic absolutely irreducible representations of the group $G$. A combinatorial construction of the series of these representations is given explicitly. In the present paper an infinite series of integral pairwise inequivalent absolutely irreducible representations of finite $p$-groups with the extra congruence conditions is constructed. We consider certain related questions including the embedding problem in Galois theory for local faithful primitive representations of supersolvable groups and integral representations arising from elliptic curves. Bibliography: 27 titles.
Keywords: finite nilpotent groups, integral domain, Dedekind ring, elliptic curves.
@article{CHEB_2015_16_3_a15,
     author = {D. A. Malinin},
     title = {One construction of integral representations of $p$-groups and some applications},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {322--338},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a15/}
}
TY  - JOUR
AU  - D. A. Malinin
TI  - One construction of integral representations of $p$-groups and some applications
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 322
EP  - 338
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a15/
LA  - en
ID  - CHEB_2015_16_3_a15
ER  - 
%0 Journal Article
%A D. A. Malinin
%T One construction of integral representations of $p$-groups and some applications
%J Čebyševskij sbornik
%D 2015
%P 322-338
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a15/
%G en
%F CHEB_2015_16_3_a15
D. A. Malinin. One construction of integral representations of $p$-groups and some applications. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 322-338. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a15/

[1] Bacon M., Kappe L. C., “The nonabelian tensor square of a 2-generator $p$-group of class 2”, Arch. Math., 61 (1993), 508–516 | DOI | MR | Zbl

[2] Ahmad A., Magidin A., Morse R., “Two generator $p$-groups of nilpotency class 2 and their conjugacy classes”, Publ. Math. Debrecen, 81:1–2 (2012), 145–166 | DOI | MR | Zbl

[3] Cepulic V., Pyliavska O. S., “A class of nonabelian nonmetacyclic finite 2-groups”, Glasnik matematicki, 41(1) (2006), 65–70 | DOI | MR | Zbl

[4] Curtis Ch. W., Reiner I., Representation theory of finite groups and associative algebras, Reprint of the 1962 original, AMS Chelsea Publishing, Providence, RI, 2006, xiv+689 pp. | MR | Zbl

[5] Destrempes F., “Deformations of Galois representations: the flat case”, Seminar on Fermat's Last Theorem (Toronto, ON, 1993–1994), Canad. Math. Soc. Conf. Proc., 17, Amer. Math. Soc., Providence, RI, 1995, 209–231 | MR | Zbl

[6] Deuring M., Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, 41, Zweite, korrigierte auflage, Springer-Verlag, Berlin–New York, 1968, viii+143 pp. (in German) | MR | Zbl

[7] Faddeev D. K., “On generalized integral representations over Dedekind rings”, J. Math. Sci. (New York), 89:2 (1998), 1154–1158 | DOI | MR

[8] Faddeev D. K., “Tables of the fundamental unitary representations of the Fedorov groups”, Trudy Mat. Steklov Inst., 56, 1961, 3–174 (in Russian) | MR

[9] Faddeev D. K., “An introduction to the multiplicative theory of modules of integral representations”, Trudy Mat. Inst. Steklov, 80, 1965, 145–182 (in Russian) | MR | Zbl

[10] Ishkhanov V. V., Lur'e B. B., “An embedding problem with a nonabelian kernel for local fields”, J. Math. Sci. (N. Y.), 161:4 (2009), 553–557 | DOI | MR | Zbl

[11] Isaacs I., Martin Character theory of finite groups, Pure and Applied Mathematics, 69, Academic Press, New York–London; Harcourt Brace Jovanovich Publishers, 1976, xii+303 pp. | MR

[12] Ishkhanov V. V., Lur'e B. B., Faddeev D. K., The embedding problem in Galois theory, Translated from the 1990 Russian original by N. B. Lebedinskaya, Translations of Mathematical Monographs, 165, American Mathematical Society, Providence, RI, 1997, xii+182 pp. | MR

[13] Knapp W., Schmidt P., “An extension theorem for integral representations”, J. Austral. Math. Soc. (Ser. A), 63 (1997), 1–15 | DOI | MR

[14] Kappe L. C., Sarmin N., Visscher M., “Two-generator 2-groups of class two and their nonabelian tensor squares”, Glasgow Math. J., 41 (1999), 417–430 | DOI | MR

[15] Kolyvagin V. A., “Formal groups and the norm residue symbol”, Math. USSR Izvestija, 15:2 (1980), 289–348 ; V. A. Kolyvagin, “Formalnye gruppy i simvol normennogo vycheta”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 1054–1120 | DOI | MR

[16] Koch H., “Classification of the primitive representations of the Galois group of local fields”, Inventiones Math., 40 (1977), 195–216 | DOI | MR

[17] Malinin D., Van Oystaeyen F., “Realizability of two-dimensional linear groups over rings of Integers of algebraic number fields”, Algebras and Representation Theory, 14:2 (2011), 201–211 | DOI | MR

[18] Malinin D., “Galois stability for integral representations of finite groups”, Algebra i Analiz, St.-Petersburg Math. J., 12:3 (2001), 423–449 ; D. A. Malinin, “Tselochislennye predstavleniya konechnykh grupp, ustoichivye pri deistvii gruppy Galua”, Algebra i analiz, 12:3 (2000), 106–145 | MR

[19] Malinin D., “Integral representations of $p$-groups of given nilpotency class over local fields”, St.-Petersburg Math. J., 10:1 (1998), 45–52 | MR

[20] Van Oystaeyen F., Zalesskiĭ A. E., “Finite groups over arithmetic rings and globally irreducible representations”, J. Algera, 215 (1999), 418–436 | MR | Zbl

[21] Redei L., “Das schiefe Produkt in der Gruppentheorie”, Comment. Math. Helvet., 20 (1947), 225–267 | DOI | MR

[22] Redei L., Endliche $p$-Gruppen, Akademiai Kiado, Budapest, 1989 | MR | Zbl

[23] Rigby J. F., “Primitive linear groups containing a normal nilpotent subgroup larger than the centre of the group”, J. London Math. Soc., 35 (1960), 389–400 | DOI | MR | Zbl

[24] Serre J.-P., “Three letters to Walter Feit on group representations and quaternions”, J. Algebra, 319:2 (2008), 549–557 | DOI | MR | Zbl

[25] Song Q., “Finite two-generator $p$-groups with cyclic derived group”, Communications in Algebra, 41:4 (2013), 1499–1513 | DOI | MR | Zbl

[26] Yakovlev A. V., “The embedding problem of fields”, Izv. Akad. Nauk SSSR Ser. Mat., 28:3 (1964), 645–660 (in Russian) | MR | Zbl

[27] Demushkin S. P., Shafarevich I. R., “The embedding problem for local fields”, Izv. Akad. Nauk SSSR Ser. Mat., 23:6 (1959), 823–840 (in Russian) | MR | Zbl