Binary additive problem with numbers of special type
Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 246-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider binary additive problem of the form $ n_1 + n_2 = N $ with $ n_1 \in \mathbb {N} (\alpha, I_1)$, $ N_2 \in \mathbb{N} (\beta, I_2) $, where $\mathbb{N} (\alpha, I) = \{n \in \mathbb{N}: \{n \alpha \} \in I \} $. Main examples of such sets are the sets of natural numbers with specified ending of greedy expansion of the number by linear recurrence sequences associated with Pisot numbers. Besides that, the sets $ \mathbb{N} (\alpha, I) $ are special cases of quasilattices. Previously additive problems on the sets of this type are considered only for the case $ \alpha = \beta $. In this case was obtained asymptotic formulaes for the number of solutions of the additive problem with an arbitrary number of terms, and for number of solutions in analogues of ternary Goldbach problem, Hua-Loken problem, Waring problems, and Lagrange problem about the representation number of natural numbers as a sum of four squares. Wherein, Gritsenko and Motkina discovered that in the case of linear problems we have the following nontrivial effect: apprearence of a rather complicated function in the main term of the asymptotics for the number of solutions. For nonlinear problems corrsponding effect is missing and the form of the main term can be obtained by the density considerations. In our problem, we show that the behavior of the main term of the asymptotic formula for the number of solutions significantly depends on the arithmetic of $ \alpha $ and $ \beta $. If $ 1 $, $ \alpha $ and $ \beta $ are linearly independent over the ring of integers $ \mathbb{Z} $, then the main term of the asymptotic has the "density" form, i.e. it is equal to $ | I_1 || I_2 | N $. In the case of linear dependence of $ 1 $, $ \alpha $ and $ \beta $ we have the Gritsenko-Motkina effect, i.e. the main term is $\rho (\{N \beta \}) N $, where $ \rho $ is a rather complicated efficiently computable piecewise linear function of the fractional part $ \{N \beta \} $. we obtain an algorithm for computation of the function $ \rho $, and study basic properties of this function. In particular, we obtain sufficient conditions for its non-vanishing. Also we give a numerical example of the computation of this function for some concrete sets $ \mathbb{N} (\alpha, I_1) $, $ \mathbb {N} (\beta, I_2) $. In the final part of the paper we discuss some open problems in this area. Bibliography: 23 titles.
Keywords: additive problem, uniform distribution.
@article{CHEB_2015_16_3_a10,
     author = {A. A. Zhukova and A. V. Shutov},
     title = {Binary additive problem with numbers of special type},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {246--275},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a10/}
}
TY  - JOUR
AU  - A. A. Zhukova
AU  - A. V. Shutov
TI  - Binary additive problem with numbers of special type
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 246
EP  - 275
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a10/
LA  - ru
ID  - CHEB_2015_16_3_a10
ER  - 
%0 Journal Article
%A A. A. Zhukova
%A A. V. Shutov
%T Binary additive problem with numbers of special type
%J Čebyševskij sbornik
%D 2015
%P 246-275
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a10/
%G ru
%F CHEB_2015_16_3_a10
A. A. Zhukova; A. V. Shutov. Binary additive problem with numbers of special type. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 246-275. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a10/

[1] Gricenko S. A., Mot'kina N. N., “Hua Lo-ken problem involving prime numbers of a special type”, DAN respubliki Tadzhikistan, 52:7 (2009), 497–500 (in Russian)

[2] Gricenko S. A., Mot'kina N. N., “On the computation of some singular series”, Chebyshevskii Sb., 12:4 (2011), 85–92 (in Russian) | MR | Zbl

[3] Gricenko S. A., Mot'kina N. N., “Additive problems with given numbers”, Nauchnye vedomosti BelGU. Serija Matematika. Fizika, 18:5(76) (2010), 83–87 (in Russian)

[4] Gricenko S. A., Mot'kina N. N., “On a variant of ternary Goldbach problem”, DAN respubliki Tadzhikistan, 52:6 (2009), 413–417 (in Russian)

[5] Gricenko S. A., Mot'kina N. N., “On Chudakov's theorem involving primes of a special type”, Chebyshevskii Sb., 12:4 (2011), 75–84 (in Russian) | MR | Zbl

[6] Gricenko S. A., Mot'kina N. N., “Waring's problem involving natural numbers of a special type”, Chebyshevskii Sb., 15:3 (2014), 31–47 (in Russian) | Zbl

[7] Davletyarova E. P., Zhukova A. A., Shutov A. V., “Geometrization of Fibonacci numeration system and its applications to number theory”, St. Petersburg Mathematical Journal, 25:6 (2014), 893–907 | DOI | MR | Zbl

[8] Zhuravlev V. G., “Hyperbolas over two-dimensional Fibonacci quasilattices”, Journal of Mathematical Sciences, 182:4 (2012), 472–483 | DOI | MR | Zbl

[9] Zhuravlev V. G., “Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum”, St. Petersburg Mathematical Journal, 20:3 (2009), 339–360 | DOI | MR | Zbl

[10] Zhuravlev V. G., “One-dimensional Fibonacci quasilattices and their application to the Euclidean algorithm and Diophantine equations”, St. Petersburg Mathematical Journal, 19:3 (2008), 431–454 | DOI | MR | MR | Zbl | Zbl

[11] Zhuravlev V. G., “Sums of squares over the Fibonacci $\circ$-ring"”, Journal of Mathematical Sciences, 143:3 (2007), 3108–3123 | DOI | MR | Zbl

[12] Zhuravlev V. G., “Rauzy tilings and bounded remainder sets on the torus”, Journal of Mathematical Sciences, 137:2 (2006), 4658–4672 | DOI | MR | Zbl

[13] Zhuravlev V. G., “The Pell equation over the $\circ$-Fibonacci ring”, Journal of Mathematical Sciences, 150:3 (2008), 2084–2095 | DOI | MR

[14] Krasil'shchikov V. V., Shutov A. V., Zhuravlev V. G., “One-dimensional quasiperiodic tilings admitting progressions enclosure”, Russian Mathematics (Izvestiya VUZ. Matematika), 53:7 (2009), 1–6 | DOI | MR | Zbl

[15] Krasil'shchikov V. V., Shutov A. V., “Distribution of points of one-dimensional quasilattices with respect to a variable module”, Russian Mathematics (Izvestiya VUZ. Matematika), 56:3 (2012), 14–19 | DOI | MR | Zbl

[16] Shutov A. V., “The arithmetic and geometry of one-dimensional quasilattices”, Chebyshevskii Sb., 11:1 (2010), 255–262 (in Russian) | MR | Zbl

[17] Shutov A. V., “On one additive problem with the fractional part function”, Nauchnye vedomosti BelGU. Serija Matematika. Fizika, 30:5(148) (2013), 111–120 (in Russian)

[18] Shutov A. V., “Numeration systems and bounded remainder sets”, Chebyshevskii Sb., 7:3 (2006), 110–128 (in Russian) | MR | Zbl

[19] Shutov A. V., “Trigonometric sums over one-dimensional quasilattices”, Chebyshevskii Sb., 13:2 (2012), 136–148 (in Russian) | MR | Zbl

[20] Akiyama S., “Self affine tiling and Pisot numeration system”, Number Theory and its Applications, eds. K. Gyory, S. Kanemitsu, Kluwer, 1999, 7–17 | MR | Zbl

[21] Rauzy G., “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | MR | Zbl

[22] Shutov A. V., Maleev A. V., Zhuravlev V. G., “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and similarities”, Acta Crystallogrphica A, 66 (2010), 427–437 | DOI | MR

[23] Weyl H., “Ueber die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | Zbl