Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_3_a1, author = {M. M. Anzin}, title = {On the density of lattice covering for $n=17$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {35--69}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a1/} }
M. M. Anzin. On the density of lattice covering for $n=17$. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 35-69. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a1/
[1] Bambah R. P., Sloane N. J. A., “On a problem of Ryškov concerning lattice coverings”, Acta Arithm., 42 (1982), 107–109 | MR | Zbl
[2] Conway J. H., Sloane N. J. A., Sphere packings, lattices and groups, Third edition, Springer-Verlag, 1999 | MR | Zbl
[3] Anzin M. M., “On the density of a lattice covering for $n=11$ and $n=14$”, Proc. Steklov Inst. Math., 239, 2002, 1–32 | MR
[4] Ryshkov S. S., “The perfect form $A_n^k$: the existence of lattices with a nonfundamental division simplex; and the existence of perfect forms which are not Minkowski-reducible to forms having identical diagonal coefficients”, J. Sov. Math., 6:6 (1976), 672–676 ; 4, 102–164 | DOI | Zbl | Zbl
[5] Delone B. N., “The geometry of positive quadratic forms”, Usp. Mat. Nauk, 1937, no. 3, 16–62 ; no. 4, 102–164 (in Russian)
[6] Kershner R., “The number of circles covering a set”, Amer. J. Math., 61 (1939), 665–671 | DOI | MR
[7] Bambah R. P., “On lattice covering by spheres”, Proc. Nat. Inst. Sci. India, 20 (1954), 25–52 | MR | Zbl
[8] Delone B. N., Ryskov S. S., “Solution of the problem of least dense lattice covering of a four-dimensional space by equal spheres”, Sov. Math., Dokl., 4 (1963), 1333–1334 | MR | Zbl
[9] Ryskov S. S., Baranovskii E. P., “$C$-types of $n$-dimensional lattices and 5-dimensional primitive parallelohedra (with application to the theory of coverings)”, Proc. Steklov Inst. Math., 137, no. 4, 1978 | MR | MR
[10] Voronoi G., “Sur quelques proprieties des formes quadratiques positives parfaits”, J. Reine Angew. Math., 133 (1908), 97–178 | MR | Zbl
[11] Ryškov S. S., “Effectuation of a method of Davenport in the theory of coverings”, Sov. Math., Dokl., 8:4 (1967), 865–867 | Zbl
[12] Smith W. D., Studies in Computational Geometry Motivated by Mesh Generation, Ph. D. Diss., Princeton Univ., 1988 | MR | Zbl
[13] Baranovskii E. P., “The perfect lattices $\Gamma(A^n)$, and the covering density of $\Gamma(A^9)$”, Europ. J. Comb., 15:4 (1994), 317–323 | DOI | MR | Zbl
[14] Anzin M. M., “On the density of a lattice covering for $n=11$ and $n=14$”, Russ. Math. Surv. 2002., 57:2 (2002), 407–409 | DOI | DOI | MR | Zbl
[15] Frank Vallentin, Sphere coverings, lattices, and tilings (in Low Dimensions), D. Dissertation, Technische Universität München, 2003
[16] Anzin M. M., “On the density of a lattice covering for $n=13$ and $n=15$”, Algebra and number theory: modern problems and applications, Proceedings of the V international Conf., Izd-vo Tul. state Ped. University n.a. L. N. Tolstoy, Tula, 2003, 15–17 (in Russian)
[17] Anzin M. M., “On the density of a lattice covering for $n=13$ and $n=15$”, Math. Notes, 79:5 (2006), 721–725 | DOI | DOI | MR | Zbl
[18] Anzin M. M., “On a problem of Ryškov concerning lattice coverings of $n$-dimensional Euclidean space”, Diskrete matematiks and applications, Proceedings of the VIII international Seminar, Izd-vo Mekh.-Mat. Dept. Mos. state University n.a. M. V. Lomonosov, M., 2004, 374–377 (in Russian)
[19] Coxeter H. S. M., “Extreme forms”, Canad. J. Math., 3 (1951), 391–441 | DOI | MR | Zbl