Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_2_a9, author = {V. N. Kuznetsov and V. A. Matveev}, title = {On a problem of finding non-trivial zeros of {Dirichlet} $L$-functions in number fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {144--154}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a9/} }
TY - JOUR AU - V. N. Kuznetsov AU - V. A. Matveev TI - On a problem of finding non-trivial zeros of Dirichlet $L$-functions in number fields JO - Čebyševskij sbornik PY - 2015 SP - 144 EP - 154 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a9/ LA - ru ID - CHEB_2015_16_2_a9 ER -
V. N. Kuznetsov; V. A. Matveev. On a problem of finding non-trivial zeros of Dirichlet $L$-functions in number fields. Čebyševskij sbornik, Tome 16 (2015) no. 2, pp. 144-154. http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a9/
[1] Heilbronn H., “Zeta-function and L-function”, Algebraicheskaja teorija chisel, eds. J. Kassels, A. Frelikh, Mir, M., 1969, 310–346 | MR
[2] Leng S., Algebraic numbers, Mir, M., 1966 | MR
[3] Weil A., Basics of number theory, Mir, M., 1972 | MR
[4] Turan P., “On a certain new results in analytical number theory”, Problemy analiticheskoi teorii chisel, Mir, M., 1975, 118–142 | MR
[5] Korotkov A. E., Matveeva O. A., “On a particular numeric algorithm for finding zeros of entire functions which are defined by Dirichlet series with periodic coefficients”, Nauchnye vedomosti Belgorodskogo gos. universiteta, 2011, no. 24, 47–54
[6] Matveeva O. A., “On zeros of Dirichlet polynomials which approximate Dirichlet $L$-functions in the critical string”, Chebyshevskii sbornik, 14:2 (2013), 117–121 | MR
[7] Matveeva O. A., “Approximation polynomials and behavior of Dirichlet $L$-functions in the critical strip”, Izvestiia Saratovskogo un-ta. Seriia «Matematika. Informatika. Mekhanika», 13:4(2) (2013), 80–84 | MR
[8] Kuznetsov V. N., “An analog of Szego theorem for one class of Dirichlet series”, Mat. zametki, 36:6 (1994), 805–812
[9] Matveeva O. A., Analytical properties of some classes of Dirichlet series and some problems of the theory of Dirichlet $L$-functions, Dissertation, Ul'ianovsk, 2014
[10] Kuznetsov V. N., Kuznetsova T. A., Krivobok V. V., “On the impossibility of analytical continuation beyond the convergence boundary of power series corresponding to Dirichlet $L$-functions in number fields”, Mezhvuzovskii sbornik nauchnykh trudov, Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 4, 2009, 31–36
[11] Kuznetsov V. N., Krivobok V. V., Setsinskaia E. V., “On the boundary properties of one class of power series”, Mezhvuzovskii sbornik nauchnykh trudov, Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 3, 2005, 40–47
[12] Daugavet I. K., An introduction to the theory of function approximation, LGU publishing, L., 1973
[13] Suetin P. K., Classical orthogonal polynomials, Nauka, M., 1970 | MR
[14] Prahar K., The distribution of prime numbers, Mir, M., 1967 | MR
[15] Kuznetsov V. N., Setsinskaia E. V., Krivobok V. V., “On a problem of splitting a Dirichlet $L$-function in number fields”, Chebyshevskii sbornik, 5:3(11) (2004), 51–63 | MR | Zbl