Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_2_a4, author = {V. M. Buchstaber and E. Yu. Bunkova}, title = {The universal formal group that defines the elliptic function of level~3}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {66--78}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a4/} }
TY - JOUR AU - V. M. Buchstaber AU - E. Yu. Bunkova TI - The universal formal group that defines the elliptic function of level~3 JO - Čebyševskij sbornik PY - 2015 SP - 66 EP - 78 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a4/ LA - ru ID - CHEB_2015_16_2_a4 ER -
V. M. Buchstaber; E. Yu. Bunkova. The universal formal group that defines the elliptic function of level~3. Čebyševskij sbornik, Tome 16 (2015) no. 2, pp. 66-78. http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a4/
[1] M. Lazard, “Sur les groupes de Lie formels a un parametre”, Bull. Soc. Math. France, 83 (1955), 251–274 | MR | Zbl
[2] Buhstaber V. M., Miscenko A. S., Novikov S. P., “Formal groups and their role in the apparatus of algebraic topology”, Uspehi Mat. Nauk, 26:2 (1971), 131–154 (Russian) | MR | Zbl
[3] Novikov S. P., “Methods of algebraic topology from the point of view of cobordism theory”, Izv. Akad. Nauk SSSR Ser. Mat., 31:4 (1967), 855–951 (Russian) | MR | Zbl
[4] D. Quillen, “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1969), 1293–1298 | DOI | MR | Zbl
[5] Bukhshtaber V. M., “Complex cobordisms and formal groups”, Russian Math. Surveys, 67:5 (2012), 891–950 | DOI | DOI | MR | Zbl
[6] E. T. Whittaker, G. N. Watson, A Course in Modern Analysis, 4th ed., Cambridge University Press, Cambridge, England, 1990
[7] Buchstaber V. M., Ustinov A. V., “Rings coefficients formal groups”, Mat. Sb.
[8] Bukhshtaber V. M., “Functional equations that are associated with addition theorems for elliptic functions, and two-valued algebraic groups”, Russian Math. Surveys, 45:3 (1990), 213–215 | DOI | MR | Zbl
[9] F. Hirzebruch, Elliptic genera of level $N$ for complex manifolds, Prep. MPI, 88–24
[10] F. Hirzebruch, T. Berger, R. Jung, Manifolds and Modular Forms, Vieweg, Braunschweig, 1992 | MR | Zbl
[11] I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions”, Math. Notes, 47:2 (1990), 132–142 | DOI | MR | Zbl
[12] J. Barr von Oehsen, “Elliptic genera of level $N$ and Jacobi polynomials”, Proc. Amer. Math. Soc., 122 (1994), 303–312 | MR | Zbl
[13] M. Hazewinkel, Formal Groups and Applications, Academic Press, New York–San Francisco–London, 1978 | MR | Zbl
[14] Bukhshtaber V. M., Bun'kova E. Yu., “Krichever formal groups”, Funct. Anal. Appl., 45:2 (2011), 99–116 | DOI | DOI | MR
[15] Buchstaber V. M., Netay E. Yu., “$\mathbb{C}P(2)$-multiplicative Hirzebruch genera and elliptic cohomology”, Russian Math. Surveys, 69:4 (2014), 757–759 | DOI | DOI | MR | MR | Zbl