Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_2_a3, author = {A. D. Bruno}, title = {Universal generalization of the continued fraction algorithm}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {35--65}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a3/} }
A. D. Bruno. Universal generalization of the continued fraction algorithm. Čebyševskij sbornik, Tome 16 (2015) no. 2, pp. 35-65. http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a3/
[1] Venkov B. A., Elementary theory of numbers, ONTI, M.–L., 1937
[2] Khinchin A. Ya., Continued fractions, Noordhoff, Groningen, 1963 | MR
[3] Wallis J. A., Arithmetica infinitorum, 1655
[4] Euler L., “De fractinibus continuis”, Comm. Acad. Sci. Imper. Petropol., 9 (1737)
[5] Lagrange J. L., Complement chez Elements d'algebre etc. par M. L. Euler, v. III, 1774
[6] Euler L., “De relatione inter ternas pluresve quantitates instituenda”, Petersburger Akademie Notiz. Exhib. (August 14, 1775); Commentationes arithmeticae collectae, v. II, St. Petersburg, 1849, 99–104
[7] Jacobi C. G. J., “Allgemeine Theorie der Kettenbruchänlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird”, J. Reine Angew. Math., 69 (1868), 29–64 ; Gesammelte Werke, v. IV, Reimer, Berlin, 1891, 385–426 | DOI | MR
[8] Jacobi C. G. J., “Ueber die Auflösung der Gleichung $a_1x_1+a_2x_2+\dotsc+a_nx_n = f_n$”, J. Reine Angew. Math., 69 (1868), 21–28
[9] Poincare H., “Sur une generalization des fractionés continues”, C.R. Acad. Sci. Paris. Ser. 1, 99 (1884), 1014–1016
[10] Brun V., “En generalisation av Kjedebroken”, Skrifter utgit av Videnskapsselskapeti Kristiania, v. I, Matematisk-Naturvidenskabelig Klasse, 6, 1919–1920 | Zbl
[11] Perron O., “Grundlagen für eine Theorie des Jacobischen Ketten-bruchalgorithmus”, Math. Ann., 64 (1907), 1–76 | DOI | MR | Zbl
[12] Bernstein L., The Jacobi–Perron algorithm — its theory and application, LNM, 207, Springer Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl
[13] Pustylnikov L. D., “Generalized continued fractions and the ergodic theory”, Russian Math.-Surveys, 58:1 (2003) | DOI | MR | Zbl
[14] Schweiger F., Multidimensional Continued Fractions, Oxford Univ. Press, New York, 2000 | MR | Zbl
[15] Hermite Ch., Correspondance d'Hermite et de Stieltjes, lettres 232, 238, 408, v. II, Gauthier-Villars, Paris, 1905 | MR | Zbl
[16] Bruno A. D., Parusnikov V. I., “Klein polyhedrals for two cubic Davenport forms”, Math. Notes, 56:3–4 (1994), 994–1007 | DOI | MR | Zbl
[17] Bruno A. D., Parusnikov V. I., “Comparison of various generalization of continued fractions”, Math. Notes, 61:3 (1997), 278–286 | DOI | DOI | MR | MR | Zbl
[18] Parusnikov V. I., “Klein polyhedra for complete decomposable forms”, Number theory. Dvophantine, Computational and Algebraic Aspects, eds. K. Győry, A. Pethő, V. T. Sós, De Gruyter, Berlin–New York, 1998, 453–463 | MR | Zbl
[19] Parusnikov V. I., “Klein polyhedra for the fourth extremal forms”, Math. Notes, 67:1 (2000), 87–102 | DOI | DOI | MR | Zbl
[20] Parusnikov V. I., “Klein's polyhedra with big faces”, Preprinty IPM, 1997, 093 | Zbl
[21] Parusnikov V. I., “Klein's polyhedra for the fifth extremal cubic form”, Preprinty IPM, 1998, 069
[22] Parusnikov V. I., “Klein's polyhedra for the sixth extremal cubic form”, Preprinty IPM, 1999, 069
[23] Parusnikov V. I., “Klein's polyhedra for the seventh extremal cubic form”, Preprinty IPM, 1999, 079 | Zbl
[24] Lejeune Dirichlet G. P., “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen”, S.-V. Press. Akad. Wiss., 1842, 93–95; Werke, v. I, Reimer, Berlin, 1889, 635–638
[25] Hermite Ch., “Lettres de M. Ch. Hermite â M. Jacobi sur differents objets de la theorie des nombres”, J. Reine Angew. Math., 40 (1850), 261–315 ; Oeuvres, I, Gauther-Villares, Paris, 1905, 100–163; Opuscule Mathematica de Jacobi, v. II | DOI | MR
[26] Klein F., “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nadir. Ges. Wiss. Göttingen Math.-Phys. Kl., 1895, no. 3, 357–359 | Zbl
[27] Minkowski H., “Generalisation de le theorie des fractions continues”, Ann. Sci. Ec. Norm. Super, ser. III, 13 (1896), 41–60 ; Gesamm. Abh., v. I, 278–292; Собр. соч. в 3-х томах, т. 1, Из-во АН УССР, Киев, 1952, 197–391 | MR | Zbl
[28] Voronoi G. F., On Generalization of the Algorithm of Continued Fraction, Warsawa University, 1896
[29] Skubenko B. F., “Minimum of decomposable cubic form of three variables”, J. Sov. Math., 53:3 (1991), 302–321 | DOI | MR | Zbl | Zbl
[30] Arnold V. I., “Higher dimensional continued fraction”, Regular and Chaotic Dynamics, 3:3 (1998), 10–17 | DOI | MR | Zbl
[31] Lachaud G., “Polyédre d'Arnol'd et voile d'un cône simplicial: analogues du théorème de Lagrange”, C. R. Acad. Sei. Ser. 1, 317 (1993), 711–716 | MR | Zbl
[32] Lachaud G., Polyédre d'Arnol'd et voile d'un cône simplicial, analogues du théorème de Lagrange pour les irrationnels de degré quelconque, Prétirage No 93-17, Laboratoire de Mathématiques Discretes du C.N.R.S., Marseille, 1993
[33] Brentjes A. J., Multi-dimensional Continued Fraction Algorithms, Mathematical Centre Tracts, 145, Mathematisch Centrum, Amsterdam, 1981 | MR | Zbl
[34] Buchmann J., “On the period length of the generalized Lagrange algorithm”, J. Number Theory, 26 (1987), 8–37 | DOI | MR
[35] Bykovsky V. A., “The Valen's theorem for two-dimensional convergent fraction”, Math. Notes, 66:1 (1999) | DOI | MR | Zbl
[36] Hurwitz A., “Ueber die angenäherte Darstellung der Zahlen durch rationale Brüche”, Math. Ann., 44 (1894), 417–436 | DOI | MR
[37] Bruno A. D., “Continued fraction expansion of algebraic numbers”, USSR Comput. Math. and Math. Phys., 4:2 (1964), 1–15 | DOI | MR | Zbl
[38] Lang S., Trotter N., “Continued fractions of some algebraic numbers”, J. Reine Angew. Math., 252 (1972), 112–134 | MR
[39] Stark H. M., “An explanation of some exotic continued fractions found by Brillhart”, Computers in Number Theory, Academic Press, London–New York, 1971, 21–35 | MR
[40] Minkowski N., “Uber die Annelierung an eine reele Grosse durch rationale Zahlen”, Math. Annalen, 54 (1901), 91–124 ; Gesamm. Abh., v. I, 320–352 | DOI | MR | Zbl
[41] Pipping N., “Zur Theorie der Diagonalkettenbrüche”, Acta Acad. Aboens., 3 (1924), 22 | Zbl
[42] Nechaev V. I., Diagonal continued fraction, Math. Encyclop., Kluwer Acad. Publ., 1979 | MR
[43] Bruno A. D., “The correct generalization of the continued fraction”, Preprinty IPM, 2003, 086
[44] Bruno A. D., Parusnikov V. I., “Polyhedra of absolute values for triple of linear forms”, Preprinty IPM, 2003, 093
[45] Bruno A. D., “On generalization of the continued fraction”, Preprinty IPM, 2004, 010
[46] Bruno A. D., “Algorithm of generalized continued fractions”, Preprinty IPM, 2004, 045 | Zbl
[47] Bruno A. D., Parusnikov V. I., “Further generalization of the continued fraction”, Preprinty IPM, 2005, 040
[48] Bruno A. D., Parusnikov V. I., “New generalizations of the continued fraction”, Preprinty IPM, 2005, 052, 20 pp.
[49] Bruno A. D., “Structure of the best Diophantine approximations”, Doklady Mathematics, 71:3 (2005), 396–400 | MR | Zbl
[50] Bruno A. D., “Generalized continued fraction algorithm”, Doklady Mathematics, 71:3 (2000), 446–450
[51] Parusnikov V. I., “Comparison of several generalizations of the continued fraction”, Chebyshevsky Sbornik, 5:4 (2005), 180–188 | MR
[52] Bruno A. D., “Properties of the modular polyhedron”, Preprinty IPM, 2005, 072
[53] Klein F., “Sur une representation geometrique du développement, en fraction continue ordinare”, Nouv. Ann. Math. (3), 15 (1896), 327–331 | Zbl
[54] Klein F., Ausgewählte Kapitel der Zahlentheorie, Einleitung I, Göttingen, 1896, 16–50
[55] Koksma J. F., Diophantische Approximationen, Julius Springer, Berlin, 1936 | MR | Zbl
[56] Perron O., Die Lehre von den Kettenbrüchen, Teubner, Leipzig, 1913 ; Stuttgart, 1954; 1977 | Zbl
[57] Hurwitz A., “Ueber eine besondere Art der Kettenbruch-Entwiklung relier Grössen”, Acta math., 12 (1889), 367–405 | DOI | MR | Zbl
[58] Korkina E. I., “Two-dimensional convergent fractions. The simplest examples”, Proceedings of the Steklov Inst. of Math., 209 (1995), 124–144 | MR | Zbl
[59] Kontsevich M. L., Suhov Yu. M., “Statistics of Klein polyhedra and multidimensional continued fractions”, Amer. Math. Soc. Transl. (2), 197 (1999), 9–27 | MR | Zbl
[60] Briggs K., Klein polyhedra, , 2013 http://keithbriggs.info/klein-polyhedra.html
[61] Parusnikov V. I., “Klein's polyhedra for three extremal forms”, Math. Notes, 77:4 (2005), 523–538 | DOI | DOI | MR | Zbl
[62] Swinnerton-Dyer H. P. F., “On the product of three homogeneous linear forms”, Acta Arithmetica, 18 (1971), 371–385 | MR | Zbl
[63] Delone B. N., Faddeev D. K., The theory of irrationalities of the third degree, Am. Math. Soc. Transl. of Math. Monographs, 10, 1964 | MR | Zbl
[64] Delone B. N., The Petersburg's School of Mathematics, AN SSSR, M.–L., 1947
[65] Cassels J. W. S., An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin, 1959 | MR | Zbl
[66] Borevich Z. I., Shafarevich I. R., Number Theory, Academic Press, 1966 | MR | MR | Zbl
[67] Güting R., “Zur Verallgemeinerung des Kettenbruchalgorithmus, I”, J. Reine Angew. Math., 278/279 (1975) | MR | Zbl
[68] Fukuda K., “Exact algorithms and software in optimization and polyhedral computation”, Proceed. ISSAC'08 of XXI International Symposium on Symbolic and algebraic computations, ACM, NY, USA, 2008, 333–334 | MR
[69] Bruno A. D., “Generalization of continued fraction”, Chebyshevsky sbornik, 7:3 (2006), 4–71 | MR
[70] Bruno A. D., “The structure of multidimensional Diophantine approximations”, Doklady Mathematics, 82:1 (2010) | DOI | MR | Zbl
[71] Bruno A. D., Parusnikov V. I., “Two–way generalization of the continued fraction”, Doklady Mathematics, 80:3 (2009), 887–890 | DOI | MR | Zbl
[72] Bruno A. D., “Structure of the best Diophantine approximations and multidimensional generalizations of the continued fraction”, Chebyshevsky Sbornik, 11:1 (2010), 68–73 | MR | Zbl
[73] Maple 2015.0, http://www.maplesoft.com/products/Maple
[74] Bruno A. D., On geometric methods in works by V. I. Arnold and V. V. Kozlov, arXiv: 1401.6320
[75] Bruno A. D., “New generalization of continued fraction, I”, Functiones et Approximatio, 43:1 (2010), 55–104 | DOI | MR | Zbl