Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_2_a11, author = {Yu. R. Pestova}, title = {On new properties of some varieties with almost polynomial growth}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {186--207}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a11/} }
Yu. R. Pestova. On new properties of some varieties with almost polynomial growth. Čebyševskij sbornik, Tome 16 (2015) no. 2, pp. 186-207. http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a11/
[1] Bahturin Yu. A., Identities in algebras Lie, Science, M., 1985, 448 pp. | MR
[2] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122, AMS, Providence, RI, 2005, 352 pp. | MR | Zbl
[3] Malcev A. I., “On algebras with identical defining relations”, Matem. sb., 26(68):1 (1950), 19–33 | Zbl
[4] Pestova Yu. R., “Colength of the variety generated by a three-dimensional simple Lie algebra”, Vestnik Mosk. Univ. Ser. 1. Matematika. Mekhanika, 2015, no. 3, 58–61
[5] Mishchenko S. P., Fyathutdinova Yu. R., “New properties of the Lie algebra variety $\mathbf{N}_2\mathbf{A}$”, Journal of Mathematical Sciences, 197:4 (2014), 558–564 | DOI | MR | Zbl
[6] Mishchenko S. P., Pestova Yu. R., “Bases of multilinear part of Leibniz algebras variety $\widetildeV_1$”, Vestnik of Samara State University. Natural Science Series, 2014, no. 3(114), 72–78
[7] Berele A., “Codimensions of products and of intersections of verbally prime $T-$ideals”, Izrael J. Math., 103 (1998), 17–28 | DOI | MR | Zbl
[8] Mishchenko S., “A Leibniz variety with almost polynomial growth”, J. Pure Appl. Algebra, 202 (2005), 82–101 | DOI | MR | Zbl
[9] Krakowsky A., “The polynomial identities of the Grassmann algebra”, Trans. Amer. Math. Soc., 181 (1973), 429–438 | MR
[10] Mishchenko S. P., “Growth of varieties of Lie algebras”, Uspekhi Mat. Nauk, 45:6 (1990), 25–45
[11] Mishchenko S. P., “Varieties of solvable Lie algebras”, Dokl. Akad. Nauk SSSR, 313:6 (1990), 1345–1348
[12] Mishchenko S. P., “Varieties of Lie algebras with two-step nilpotent commutant”, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 1987, no. 6, 39–43
[13] Volichenko I. B., “On one Lie variety connected with sdandart identities”, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 1980, no. 1, 23–30 | MR | Zbl
[14] Abanina L. E., Structure and identities of some Leibniz varieties, UlSU, Ulyanovsk, 2003, 65 pp.
[15] Ratseev S. M., Structure and identities of some Lie algebras, UlSU, Ulyanovsk, 2006, 101 pp.
[16] Abanina L. E., “Some Leibniz varieteis”, Mathematical methods and applications, Proceedings of the 14th Mathematical Readings, 2002, 95–99
[17] Razmyslov Yu. P., “On the finite basis of identities of the matrix algebra of the second order over a field of characteristic zero”, Algebra and Logiks, 12:1 (1973), 83–113 | MR
[18] Razmyslov Yu. P., “Finite bases of some algebras varieties”, Algebra and Logiks, 13:6 (1974), 685–693 | MR | Zbl
[19] Drenski V. S., “Representations of the symmetric group and varieties of linear algebras”, Matem. sb., 115:1 (1980), 98–115 | MR