$\mathrm{BR}$-sets
Čebyševskij sbornik, Tome 16 (2015) no. 2, pp. 8-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Vladimir school of number theory was studied quasiperiodic tilings for a long time. The uniform distribution problem of fractional parts on the torus come from here. It is important to find exact estimates of the remainder for this distribution. The paper is devoted to the important problem of number theory: bounded remainder sets. Relevance of the problem caused by the transition from the classical numerical and functional arithmetic structures to nonlinear arithmetic structures. Dynamical systems on bounded remainder sets generate balanced words,similar to words Sturmian and Rauzy words. Balanced words are important, for dynamical systems, coding theory,theory of communications and optimization problems, theory of languages and linguistics, recognition theory, statistical physics, etc. The purpose of our research is construction of multidimensional bounded remainder sets and finding exact estimates of the remainder for this sets. The solution to this problem we start from two-dimensional case. We construct three classes of three-parameter two-dimensional bounded remainder sets. For their construction, we use hexagonal toric development. Now we know bounded remainder intervals, obtained by Hecke, and two-dimensional bounded remainder sets. There is the question: can we construct a new multi-dimensional sets using known sets? We construct four classes of four-parameter three-dimensional bounded remainder sets. We used for this the multiplication of toric developments. By multiplication of Hecke's intervals and two-dimensional hexagonal   developments   we   obtain   three-dimensional   hexagonal Fedorov's prisms-developments. For all described sets we give exact estimates of the remainder and prove generalization of Hecke's theorem to the multidimensional case. Also we obtain average values of the remainders, and fined sets with minimal value of the remainder. This paper is an expository of the author's main results on bounded remainder sets. Bibliography: 26 titles.
Keywords: bounded remainder sets, distribution of fractional parts, toric development.
@article{CHEB_2015_16_2_a1,
     author = {A. A. Abrosimova},
     title = {$\mathrm{BR}$-sets},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {8--22},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a1/}
}
TY  - JOUR
AU  - A. A. Abrosimova
TI  - $\mathrm{BR}$-sets
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 8
EP  - 22
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a1/
LA  - ru
ID  - CHEB_2015_16_2_a1
ER  - 
%0 Journal Article
%A A. A. Abrosimova
%T $\mathrm{BR}$-sets
%J Čebyševskij sbornik
%D 2015
%P 8-22
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a1/
%G ru
%F CHEB_2015_16_2_a1
A. A. Abrosimova. $\mathrm{BR}$-sets. Čebyševskij sbornik, Tome 16 (2015) no. 2, pp. 8-22. http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a1/

[1] Weyl H., “Über die Gibbs'sche Erscheinung und verwandte Konvergenzph änomene”, Rendicontidel Circolo Mathematico di Palermo, 30 (1910), 377–407 | DOI | Zbl

[2] Hecke E., “Eber Analytische Funktionen und die Verteilung von Zahlen mod. eins”, Math. Sem. Hamburg. Univ., 5 (1921), 54–76

[3] Erdös P., “Problems and results on diophantine approximation”, Comp. Math., 16 (1964), 52–65 | MR | Zbl

[4] Kesten H., “On a conjecture of Erdös and Szüsz related to uniform distribution mod 1”, Acta Arithmetica, 12 (1966), 193–212 | MR | Zbl

[5] Zhuravlev V. G., “One-dimensional Fibonacci tilings”, Izvestiya: Mathematics, 71:2 (2007), 89–122 | DOI | MR | Zbl

[6] Shutov A. V., “Optimum estimates in the problem of the distribution of fractional parts of the sequence $n\alpha$”, Vestnik SamGU. Yestestvennonauchnaya seriya, 5:3 (2007), 112–121

[7] Krasilshchikov V. V., Shutov A. V., “Description and exact maximum and minimum values of the remainder in the problem of the distribution of fractional parts”, Mathematical Notes, 89:1 (2011), 43–52 | DOI | MR | Zbl

[8] Oren I., “Admissible functions with multiplie discontinioutes”, Israel J. Math., 42 (1982), 353–360 | DOI | MR | Zbl

[9] Shutov A. V., “The two-dimensional Hecke-Kesten problem”, Chebyshevskiy sbornik, 12:2 (2011), 151–162 | Zbl

[10] Szüsz R., “Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheitsquadrats”, Acta Math. Acad. Sci. Hungar., 1954, no. 5, 35–39 | DOI | MR | Zbl

[11] Liardet P., “Regularities of distribution”, Compositio Math., 61 (1987), 267–293 | MR | Zbl

[12] Rauzy G., “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | MR | Zbl

[13] Ferenczi S., “Bounded remainder sets”, Acta Arithmetica, 61 (1992), 319–326 | MR | Zbl

[14] Zhuravlev V. G., “Rauzy tilings and bounded remainder sets on the torus”, Journal of Mathematical Sciences, 322 (2005), 83–106 | Zbl

[15] Zhuravlev V. G., “Exchanged toric developments and bounded remainder sets”, Journal of Mathematical Sciences, 392 (2011), 95–145

[16] Zhuravlev V. G., “Multidimensional Hecke theorem on the distribution of fractional parts”, St. Petersburg Mathematical Journal, 24:1 (2012), 1–33

[17] Zhuravlev V. G., “Bounded remainder polyhedra”, Proc. Steklov Inst. Math., 280:suppl. 2 (2013), S71–S90 | DOI | Zbl

[18] Abrosimova A. A., “Bounded remainder sets on a two-dimensional torus”, Chebyshevskiy sbornik, 12:4(40) (2011), 15–23 | MR

[19] Abrosimova A. A., “Average values for deviation distribution of points on the torus”, Belgorod State University Scientific bulletin. Mathematics Physics, 5(124):26 (2012), 5–11

[20] Abrosimova A. A., “Boundaries of deviations for three-dimensional bounded remainder sets”, Belgorod State University Scientific bulletin. Mathematics Physics, 19(162):32 (2013), 5–21 | MR

[21] Abrosimova A. A., “Fractal bounded remainder sets”, Mathematical Modeling of Fractal Processes of Analysis and Informatics, II Int. Conf. Proc. of Young Scientists (Nalchik, 2012), 18–21 | MR

[22] Zhuravlev V. G., “Geometrization of Hecke's theorem”, Chebyshevskiy sbornik, 11:1 (2010), 125–144 | MR

[23] Abrosimova A. A., Blinov D. A., Polyakova T. V., “Optimization of boundaries of remainder for bounded remaider sets on two-dimensional torus”, Chebyshevskiy sbornik, 14:1(45) (2013), 9–17 | MR | Zbl

[24] Abrosimova A. A., Blinov D. A., “Boundaries optimization of two-dimensional bounded remainder sets”, Belgorod State University Scientific bulletin. Mathematics Physics, 26(169):33 (2013), 5–13 | MR

[25] Abrosimova A. A., Zhuravlev V. G., “Hecke theorem generalization to the two-dimensional case and balanced words”, Algebra and Number Theory: modern problems and applications, VIII Int. Conf. Proc., dedicated to 190-year anniversary of the P. L. Chebyshev and 120-year anniversary of the I. M. Vinogradov (Saratov, 2011), 3–4 | MR

[26] Abrosimova A. A., “Multiplication of toric developments and constructing of bounded remainder sets”, Uchenye zapiski Orlovskogo Gosudarstvennogo Universiteta. Seriya: Yestestvennyye, tekhnicheskiye i meditsinskiye nauki, 6:2 (2012), 30–37 | MR