Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_1_a9, author = {D. V. Koleda}, title = {On the asymptotic distribution of algebraic numbers with growing naive height}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {191--204}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a9/} }
D. V. Koleda. On the asymptotic distribution of algebraic numbers with growing naive height. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 191-204. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a9/
[1] Baker A., Schmidt W., “Diophantine approximation and Hausdorff dimension”, Proc. London Math. Soc., 21:3 (1970), 1–11 | DOI
[2] Bernik V. I, “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28 (In Russian)
[3] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:2 (1999), 97–112
[4] Bernik V. I., Vasil'ev D. V., “A Khinchin-type theorem for integer-valued polynomials of a complex variable”, Trudy Instituta Matematiki, Natl. Akad. Nauk Belarusi, Inst. Mat., 3 (1999), 10–20 (In Russian)
[5] Koleda D. V., “Distribution of real algebraic numbers of a given degree”, Dokl. Nats. Akad. Nauk Belarusi, 56:3 (2012), 28–33 (In Belarusian)
[6] Koleda D. V., “On the number of polynomials with a given number of roots on a finite interval”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2013, no. 1, 41–49 (In Russian)
[7] Koleda D. V., “Distribution of real algebraic numbers of the second degree”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2013, no. 3, 54–63 (In Russian)
[8] Masser D., Vaaler J. D., “Counting Algebraic Numbers with Large Height I”, Diophantine Approximation, Developments in Mathematics, 16, 2008, 237–243 | DOI
[9] van der Waerden B. L., “Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt”, Monatshefte für Mathematik, 43:1 (1936), 133–147 | DOI
[10] Prasolov V. V., Polynomials, 2-nd ed., MCCME, M., 2001 (In Russian)
[11] Davenport H., “On a principle of Lipschitz”, J. London Math. Soc., 26 (1951), 179–183 ; Corrigendum: 39 (1964), 580 | DOI | DOI
[12] Dubickas A., “On the number of reducible polynomials of bounded naive height”, Manuscripta Mathematica, 144:3–4 (2014), 439–456 | DOI
[13] Mikolás M., “Farey series and their connection with the prime number problem, I”, Acta Univ. Szeged. Sect. Sci. Math., 13 (1949), 93–117
[14] Niederreiter H., “The distribution of Farey points”, Math. Ann., 201 (1973), 341–345 | DOI
[15] Brown H., Mahler K., “A generalization of Farey sequences: Some exploration via the computer”, J. Number Theory, 3:3 (1971), 364–370 | DOI
[16] Cobeli C., Zaharescu A., “The Haros–Farey sequence at two hundred years”, Acta Univ. Apulensis Math. Inform., 2003, no. 5, 1–38