Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_1_a6, author = {N. V. Budarina and V. I. Bernik and H. O'Donnell}, title = {How does the discriminant of integer polynomials depend on the distribution of roots?}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {153--162}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a6/} }
TY - JOUR AU - N. V. Budarina AU - V. I. Bernik AU - H. O'Donnell TI - How does the discriminant of integer polynomials depend on the distribution of roots? JO - Čebyševskij sbornik PY - 2015 SP - 153 EP - 162 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a6/ LA - ru ID - CHEB_2015_16_1_a6 ER -
%0 Journal Article %A N. V. Budarina %A V. I. Bernik %A H. O'Donnell %T How does the discriminant of integer polynomials depend on the distribution of roots? %J Čebyševskij sbornik %D 2015 %P 153-162 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a6/ %G ru %F CHEB_2015_16_1_a6
N. V. Budarina; V. I. Bernik; H. O'Donnell. How does the discriminant of integer polynomials depend on the distribution of roots?. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 153-162. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a6/
[1] Van Der Waerden B. L., Algebra, Springer-Verlag, Berlin–Heidelberg, 1971
[2] Davenport H., “A note on binary cubic forms”, Mathematika, 8 (1961), 58–62 | DOI
[3] Sprindzhuk V. G., Mahler's problem in metric theory of numbers, Minsk, 1967 (Russian)
[4] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arithmetica, 90:2 (1999), 97–112
[5] Bernik V. I., “The exact order of approximating zero by values of integral polynomials”, Acta Arithmetica, 53:1 (1989), 17–28
[6] Bernik V. I., “Application of the Hausdorff dimension in the theory of Diophantine approximations”, Acta Arithmetica, 42:3 (1983), 219–253
[7] Budarina N., Dickinson D., Bernik V., “A divergent Khintchine theorem in the real, complex and $p$-adic fields”, Lith. Math. J., 48:2 (2008), 158–173 | DOI
[8] Budarina N., Dickinson D., Bernik V., “Simultaneous Diophantine approximation in the real, complex and $p$-adic fields”, Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 193–216 | DOI
[9] Goetze F., Kaliada D., Korolev M., “On the number of quadratic polynomials with bounded discriminants”, Mat. Zametki (to appear)
[10] Goetze F., Kaliada D., Kukso O., “The asymptotic number of integral cubic polynomials with bounded heights and discriminants”, Lith. Math. J., 54:2 (2014), 150–165 | DOI
[11] Bernik V., Goetze F., Kukso O., “Lower bounds for the number of integral polynomials with given order of discriminants”, Acta Arithmetica, 133:4 (2008), 375–390 | DOI
[12] Beresnevich V. V., Bernik V. I., Goetze F., “Simultaneous approximations of zero by an integral polynomial, its derivative, and small values of discriminants”, Dokl. Nats. Nauk Belarusi, 54:2 (2010), 26–28; 125
[13] Beresnevich V., “Rational points near manifolds and metric Diophantine approximation”, Ann. of Math., 175:1 (2012), 187–235 | DOI
[14] Bernik V., Budarina N., “On arithmetic properties of integral polynomials with small values on the interval”, Siauliai Math. Semin., 8:16 (2013), 27–36
[15] Koleda D. V., “An upper bound for the number of integral polynomials of third degree with a given bound for discriminants”, Vestsi Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk, 2010, no. 3, 10–16; 124