Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_1_a4, author = {O. V. Shulezhko}, title = {Almost nilpotent varieties in different classes of linear algebras}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {67--88}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a4/} }
O. V. Shulezhko. Almost nilpotent varieties in different classes of linear algebras. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 67-88. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a4/
[1] Bahturin Y. A., Identities in algebras Lie, Science, M., 1985, 448 pp. (Russian)
[2] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122, AMS, Providence, RI, 2005, 352 pp. | DOI
[3] Shirshov A. I., Zhevlakov K. A., Slin'ko A. M., Shestakov I. P., Rings that are nearly associative, Nauka, M., 1978, 432 pp. (Russian)
[4] Mishchenko S., Valenti A., “An almost nilpotent variety of exponent 2”, Israel Journal of Mathematics, 199:1 (2014), 241–257 | DOI
[5] Shulezhko O. V., “New Properties of Almost Nilpotent Veriety of Exponent 2”, Izv. Saratovskogo Univ. Nov. ser. Ser. Matematika. Mehanika. Informatika, 14:3 (2014), 316–320 (Russian)
[6] Mishchenko S. P., Shulezhko O. V., “An almost nilpotent variety of any integer exponent”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 2, 53–57 (Russian)
[7] Mishchenko S., Valenti A., “On almost nilpotent varieties of subexponential growth”, Journal of Algebra, 423 (2015), 902–915 | DOI
[8] Mishchenko S. P., “Varieties of linear algebras with colength one”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 1, 25–30 (Russian)
[9] Zelmanov E. I., “About Engel Lie algebras”, DAN USSR, 292:2 (1987), 265–268 (Russian)
[10] Drensky V., Piacentini Cattaneo G. M., “Varieties of metabelian Leibniz algebras”, J. Algebra and its Applications, 1 (2002), 31–50 | DOI
[11] Cherevatenko O. I., Some effects of codimension growth of linear algebra, Diss. ... cand. of sciences, Ulyanovsk, 2008, 69 pp. (Russian)
[12] Higgins P. J., “Lie rings satisfying the Engel condition”, Proc. Cambr. Philos. Soc., 50:1 (1954), 8–15 | DOI
[13] Frolova Yu. Yu., “On the nilpotency of Engel Leibniz algebra”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 3, 63–65 (Russian)
[14] Frolova Yu. Yu., Shulezhko O. V., “Almost nilpotent varieties of Leibniz algebras”, Algebra and number theory: Contemporary Issues and Applications, Paper of XI Intern. Conf. Saratov, Sarat. University, 2013, 84–85 (Russian)
[15] Mishchenko S. P., “Growth of varieties of Lie algebras”, Uspekhi Mat. Nauk, 45 (1990), 25–45 (Russian)
[16] Giambruno A., Mishchenko S., Zaicev M., “Codimensions of algebras and growth functions”, Adv. Math., 217:3 (2008), 1027–1052 | DOI
[17] Giambruno A., Mishchenko S., Zaicev M., “Algebras with intermediate growth of the codimensions”, Advances in Applied Mathematics, 37:3 (2006), 360–377 | DOI
[18] Giambruno A., Mishchenko S. P., Irreducible characters of the symmetric group and exponential growth, 2014, arXiv: 1406.1653
[19] Chang N. T. K., Frolova Yu. Yu., “Almost commutative metabelian nilpotent varieties growth not higher than exponential”, International Conference “Mal'tsev Readings” (10–13 November 2014, Novosibirsk), 2014, 119 (Russian) http://www.math.nsc.ru/conference/malmeet/14/Malmeet2014.pdf
[20] Mishchenko S. P., Shulezhko O. V., “Description almost nilpotent anticommutative metabelian varieties with subexponential growth”, International Conference “Mal'tsev Readings” (10–13 November 2014, Novosibirsk), 2014, 110 (Russian) http://www.math.nsc.ru/conference/malmeet/14/Malmeet2014.pdf