Mixed joint universality for $L$-functions from Selberg’s class and periodic Hurwitz zeta-functions
Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 219-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1975, a Russian mathematician S. M. Voronin discovered the universality property of the Riemann zeta-function $\zeta(s)$, $s=\sigma+it$. Roughly speaking, this means that analytic functions from a wide class can be approximated uniformly on compact subsets of the strip $\{s\in \mathbb{C}: 1/2 \sigma 1\}$ by shifts $\zeta(s+i\tau)$, $\tau\in \mathbb{R}$. Later, it turned out that other classical zeta and $L$-functions are also universal in the Voronin sense. Moreover, some zeta and $L$-functions have a joint universality property. In this case, a given collection of analytic functions is approximated simultaneously by shifts of zeta and $L$-functions. In the paper, we present our extended report given at the Conference dedicated to the memory of the famous number theorist Professor A. A. Karacuba. The paper contains the basic universality results on the so-called mixed joint universality initiated by H. Mishou who in 2007 obtained the joint universality for the Riemann zeta and Hurwitz zeta-functions. In a wide sense the mixed joint universality is understood as a joint universality for zeta and $L$-functions having and having no Euler product. In 1989, A. Selber introduced a famous class $\mathcal{S}$ of Dirichlet series satisfying certain natural hypotheses including the Euler product. Periodic Hurwitz zeta-functions are a generalization of classical Hurwitz zeta-functions, and have no Euler product. In the paper, a new result on mixed joint universality for $L$-functions from the Selberg clas and periodic Hurwitz zeta-functions is presented. For the proof a probabilistic method can be applied. Bibliography: 24 titles.
Keywords: Riemann zeta-function, Hurwitz zeta-function, periodic Hurwitz zeta-function, Selberg class, universality, joint universality.
@article{CHEB_2015_16_1_a11,
     author = {R. Macaitien\.{e}},
     title = {Mixed joint universality for $L$-functions from {Selberg{\textquoteright}s} class and periodic {Hurwitz} zeta-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {219--231},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a11/}
}
TY  - JOUR
AU  - R. Macaitienė
TI  - Mixed joint universality for $L$-functions from Selberg’s class and periodic Hurwitz zeta-functions
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 219
EP  - 231
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a11/
LA  - en
ID  - CHEB_2015_16_1_a11
ER  - 
%0 Journal Article
%A R. Macaitienė
%T Mixed joint universality for $L$-functions from Selberg’s class and periodic Hurwitz zeta-functions
%J Čebyševskij sbornik
%D 2015
%P 219-231
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a11/
%G en
%F CHEB_2015_16_1_a11
R. Macaitienė. Mixed joint universality for $L$-functions from Selberg’s class and periodic Hurwitz zeta-functions. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 219-231. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a11/

[1] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981

[2] Genys J., Macaitienė R., Račkauskienė S., Šiaučiūnas D., “A mixed joint universality theorem for zeta-functions”, Math. Modelling and Analysis, 15:4 (2010), 431–446 | DOI

[3] Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979

[4] Javtokas A., Laurinčikas A., “The universality of the periodic Hurwitz zeta-functions”, Integral Transf. Spec. Funct., 17 (2006), 711–722 | DOI

[5] Kaczorowski J., Perelli A., “The Selberg class: a survey”, Number Theory in Progress, Proc. of the Intern. Conf. in honor of the 60th birthday of A. Schinzel (Zakopane, 1997), v. 2, Elementary and Analytic Number Theory, eds. K. Györy et al., Walter De Gruyter, Berlin, 1999, 953–992

[6] Kačinskaitė R., Laurinčikas A., “The joint distribution of periodic zeta-functions”, Studia Sci. Math. Hung., 48:2 (2011), 257–279

[7] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996

[8] Laurinčikas A., “On joint universality of Dirichlet $L$-functions”, Chebysh. Sb., 12:1 (2011), 124–139

[9] Laurinčikas A., Macaitienė R., “On the universality of zeta-functions of certain cusp forms”, Analytic Prob. Methods Number Theory, J. Kubilius Memorial Volume, eds. A. Laurinčikas et al., TEV, Vilnius, 2012, 173–183

[10] Laurinčikas A., Skerstonaitė S., “Joint universality for periodic Hurwitz zeta-functions, II”, New Directions in Value-Distribution Theory of Zeta and $L$-functions (Würzburg, 2008), eds. R. Steuding, J. Steuding, Shaker Verlag, Aachen, 2009, 161–169

[11] Laurinčikas A., Šiaučiūnas D., “A mixed joint universality theorem for zeta-functions, III”, Analytic Prob. Methods Number Theory, J. Kubilius Memorial Volume, eds. A. Laurinčikas et al., TEV, Vilnius, 2012, 185–195

[12] Macaitienė R., “On joint universality for the zeta-functions of newforms and periodic Hurwitz zeta-functions”, Functions in Number Theory and Their Probabilistic Aspects, RIMS Kôkyûroku Bessatsu, B34, eds. K. Matsumoto, S. Akiyama, K. Fukuyama, H. Nakada, H. Sugita, A. Tamagawa, 2012, 217–233

[13] Matsumoto K., “A survey on the theory of universality for zeta and $L$-functions”, Number Theory: Plowing and Starring through High Wave Forms, Proceedings of the 7th China-Japan Seminar (Fukuoka, 2013), Ser. on Number Theory and its Appl., 11, eds. M. Kaneko et al., World Scientific Publishing Co., 2015, 95–144 | DOI

[14] Mergelyan S. N., “Uniform approximations to functions of complex variable”, Amer. Math. Soc. Trans., 101 (1954), 294–391; S. N. Mergelyan, “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122

[15] Mishou H., “The joint value-distribution of the Riemann zeta function and Hurwitz zeta-functions”, Lith. Math. J., 47 (2007), 32–47 | DOI

[16] Nagoshi H., Steuding J., “Universality for $L$-functions in the Selberg class”, Lith. Math. J., 50:163 (2010), 293–311 | DOI

[17] Pocevičienė V., Šiaučiūnas D., “A mixed joint universality theorem for zeta-functions, II”, Math. Modell. and Analysis, 19 (2014), 52–65 | DOI

[18] Selberg A., “Old and new conjectures and results about a class of Dirichlet series”, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), eds. E. Bombieri et al., Univ. Salerno, Salerno, 1992, 367–385

[19] Steuding J., “On the universality for functions in the Selberg class”, Proc. of the Sesion in Analytic Number Theory and Diophantine Equations (Bonn, 2002), Bonner Math. Schriften, 360, eds. D. R. Health-Brown, B. Z. Moroz, 2003, 22

[20] Steuding J., Value-Distribution of $L$-Functions, Lecture Notes Math., 1877, Springer-Verlag, Berlin–Heidelberg, 2007

[21] Voronin S. M., “Theorem on the ‘universality’ of the Riemann zeta-function”, Math. USSR Izv., 9 (1975), 443–453 | DOI

[22] Voronin S. M., “On the functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 (Russian)

[23] Voronin S. M., Analytic properties of generating functions of arithmetical objects, Diss. ... Doctor. Phys.-Matem. Nauk, Matem. Institute V. A. Steklov, M., 1977 (Russian)

[24] Walsh J. L., Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ., 20, 1960