@article{CHEB_2015_16_1_a10,
author = {A. Laurin\v{c}ikas and D. Korsakien\.{e} and D. \v{S}iau\v{c}i\={u}nas},
title = {Joint disctrete universality of {Dirichlet} $L${-functions.~II}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {205--218},
year = {2015},
volume = {16},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a10/}
}
A. Laurinčikas; D. Korsakienė; D. Šiaučiūnas. Joint disctrete universality of Dirichlet $L$-functions. II. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 205-218. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a10/
[1] Bagchi B., The Statistical Behaviour and Universality Properties of the Riemann Zeta-function and Other Allied Dirichlet Series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981
[2] Billingsley P., Convergence of Probability Measures, Wiley, New York, 1968
[3] Dubickas A., Laurinčikas A., “Joint discrete universality of Dirichlet $L$-functions”, Archiv Math., 104 (2015), 25–35 | DOI
[4] Heyer H., Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin–Heidelberg–New York, 1974
[5] Laurinčikas A., “On joint universality of Dirichlet $L$-functions”, Chebyshevskii Sb., 12:1 (2011), 129–139
[6] Mergelyan S. N., “Uniform approximations to functions of a complex variable”, Amer. Math. Trans., 101 (1954); Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122
[7] Montgomery H. L., Topics in Multiplicative Number Theory, Lecture Notes in Math., 227, Springer, Berlin, 1971 | DOI
[8] Steuding J., Value-Distribution of $L$-functions, Lecture Notes in Math., 1877, Springer-Verlag, Berlin–Heidelberg, 2007
[9] Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR Izv., 9 (1975), 443–453 | DOI
[10] Voronin S. M., “The functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503