Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2014_15_3_a6, author = {R. Shamoyan and S. Kurilenko}, title = {Some remarks on distances in spaces of analytic functions in bounded domains with $C^2$ boundary and admissible domains}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {114--130}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a6/} }
TY - JOUR AU - R. Shamoyan AU - S. Kurilenko TI - Some remarks on distances in spaces of analytic functions in bounded domains with $C^2$ boundary and admissible domains JO - Čebyševskij sbornik PY - 2014 SP - 114 EP - 130 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a6/ LA - en ID - CHEB_2014_15_3_a6 ER -
%0 Journal Article %A R. Shamoyan %A S. Kurilenko %T Some remarks on distances in spaces of analytic functions in bounded domains with $C^2$ boundary and admissible domains %J Čebyševskij sbornik %D 2014 %P 114-130 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a6/ %G en %F CHEB_2014_15_3_a6
R. Shamoyan; S. Kurilenko. Some remarks on distances in spaces of analytic functions in bounded domains with $C^2$ boundary and admissible domains. Čebyševskij sbornik, Tome 15 (2014) no. 3, pp. 114-130. http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a6/
[1] H. R. Cho, E. G. Kwon, “Growth rate of the functions in the Bergman type spaces”, J. Math. Anal. Appl., 285:1 (2003), 275–281 | DOI | MR | Zbl
[2] Cho H. R., Kwon E. G., “Embedding of Hardy spaces in bounded domains with $C^2$ boundary”, Illinois J. Math., 48:3 (2004), 747–757 | MR | Zbl
[3] H. R. Cho, J. Lee, “Inequalities for integral means for holomorphic functions in the strictly pseudoconvex domains”, Communication of Korean Mathematical Society, 20:2 (2005), 339–350 | DOI | MR | Zbl
[4] H. R. Cho, “Estimate on the mean growth of $H^{p}$ functions in convex domains of finite type”, Proc. Amer. Math. Society, 131:8, 2393–2398 | DOI | MR | Zbl
[5] W. Cohn, “Weighted Bergman projections and tangential area integrals”, Studia Mathematica, 106.1 (1993), 59–76 | MR | Zbl
[6] S. Krantz, S. Y. Li, “Duality theorems for Hardy and Bergman spaces on convex domains of finite type in $C^{n}$”, Annales de Institute Fourier, 45:5 (1995), 1305–1327 | DOI | MR | Zbl
[7] L. Lanzani, E. Stein, The Bergman projection in $L^p$ for domains with minimal smoothness, 2011, arXiv: 1201.4148 | MR
[8] W. Cohn, “Tangential characterizations of BMOA on strictly pseudoconvex domains”, Mathematica Scandinavica, 73:2 (1993), 259–273 | MR | Zbl
[9] M. Arsenovic, R. Shamoyan, “On an extremal problem in Bergman spaces”, Communication of Korean Mathematical Society, 2012 | MR
[10] J. Ortega, J. Fabrega, “Mixed norm spaces and interpolation”, Studia Math., 109:3 (1995), 234–254 | MR
[11] S.-Y. Li, W. Luo, Analysis on Besov spaces. II: Embedding and Duality theorems, preprint, 2007 | MR
[12] S. Krantz, S. Li, “A note on Hardy space and functions of Bounded Mean Oscillation on Domains of $\mathbb{C}^n$”, Michigan Math. Journal, 41 (1994) | MR | Zbl
[13] S. Krants, S. Li, “On decomposition theorems for Hardy spaces on domains in $\mathbb{C}^n$ and applications”, The Journal Functional analysis and applications, 2:1 (1995) | MR
[14] F. Beatrous (Jr.), “$L^p$ estimates for extensions of holomorphic functions”, Michigan Math. Jour., 32 (1985), 361–380 | DOI | MR | Zbl
[15] R. Shamoyan, O. Mihić, “On new estimates for distances in analytic function spaces in higher dimension”, Siberian Electronic Mathematical Reports, 6 (2009), 514–517 | MR | Zbl
[16] R. Shamoyan, O. Mihić, “On new estimates for distances in analytic function spaces in the unit disk, polydisk and unit ball”, Bolletin Asociacion Mathematica Venezolana, 17:2 (2010), 89–103 | MR | Zbl
[17] R. Shamoyan, On extremal problems in Bergman spaces in tubular domains over symmetric cones, preprint, 2012
[18] R. Shamoyan, “On extremal problems in analytic spaces in two Siegel domains”, ROMAI Journal, 2 (2012), 167–180 | MR
[19] S. Yamaji, Essential norm estimates for positive Toeplitz operators on the weighted Bergman space of a minimal bounded homogeneous domain, 2011, arXiv: 1109.4500v1
[20] H. Ishi, S. Yamaji, Some estimates of Bergman kernel in minimal bounded homogeneous domains, 2012, arXiv: 1010.4370 | MR
[21] P. Jakobczak, “The boundary regularity of the solution of the $df$ equation in the products of strictly pseudoconvex domains”, Pacific Journal of Mathematics, 121:2 (1986) | DOI | MR | Zbl
[22] T. Jimb, A. Sakai, “Interpolation manifolds for products of strictly pseudoconvex domains”, Complex Variables, 8 (1987), 222–341 | MR