Waring’s problem involving natural numbers of a special type
Čebyševskij sbornik, Tome 15 (2014) no. 3, pp. 31-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2008–2011, we solved several well–known additive problems such that Ternary Goldbach's Problem, Hua Loo Keng's Problem, Lagrange's Problem with restriction on the set of variables. Asymptotic formulas were obtained for these problems. The main terms of our formulas differ from ones of the corresponding classical problems. In the main terms the series of the form $$ \sigma_k (N,a,b)=\sum_{|m|\infty} e^{2\pi i m(\eta N-0,5 k(a+b))} \frac{\sin^k \pi m (b-a)}{\pi ^k m^k}. $$ appear. These series were investigated by the authors. Suppose that $k\ge 2$ and $n\ge 1$ are naturals. Consider the equation $$ \qquad\qquad\qquad\qquad\qquad\qquad x_1^n+x_2^n+\ldots+x_k^n=N\qquad\qquad\qquad\qquad\qquad\qquad\qquad(1) $$ in natural numbers $x_1, x_2, \ldots, x_k$. The question on the number of solutions of the equation (1) is Waring's problem. Let $\eta$ be the irrational algebraic number, $n\ge 3$, $$k\ge k_0 = \left\{ \begin{array}{ll} 2^n+1, \hbox{if $3\le n\le 10$,}\\ 2[n^2(2\log n+\log \log n +5)], \hbox{if $n>10$}. \end{array} \right.$$ In this report we represent the variant of Waring's Problem involving natural numbers such that $a\le\{\eta x_i^n\}$, where $a$ and $b$ are arbitrary real numbers of the interval $[0,1)$. Let $J(N)$ be the number of solutions of (1) in natural numbers of a special type, and $I(N)$ be the number of solutions of (1) in arbitrary natural numbers. Then the equality holds $$J(N)\sim I(N)\sigma_k(N,a,b).$$ The series $\sigma_k(N,a,b)$ is presented in the main term of the asymptotic formula in this problem as well as in Goldbach's Problem, Hua Loo Keng's Problem. Bibliography: 20 titles.
Keywords: Waring’s Problem, additive problems, numbers of a special type, number of solutions, asymptotic formula, quadratic irrationality, irrational algebraic number.
@article{CHEB_2014_15_3_a2,
     author = {S. A. Gritsenko and N. N. Motkina},
     title = {Waring{\textquoteright}s problem involving natural numbers of a special type},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {31--47},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a2/}
}
TY  - JOUR
AU  - S. A. Gritsenko
AU  - N. N. Motkina
TI  - Waring’s problem involving natural numbers of a special type
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 31
EP  - 47
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a2/
LA  - ru
ID  - CHEB_2014_15_3_a2
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%A N. N. Motkina
%T Waring’s problem involving natural numbers of a special type
%J Čebyševskij sbornik
%D 2014
%P 31-47
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a2/
%G ru
%F CHEB_2014_15_3_a2
S. A. Gritsenko; N. N. Motkina. Waring’s problem involving natural numbers of a special type. Čebyševskij sbornik, Tome 15 (2014) no. 3, pp. 31-47. http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a2/

[1] Vinogradov I. M., “Predstavlenie nechetnogo chisla summoi trekh prostykh chisel”, DAN SSSR, 15 (1937), 169–172

[2] Hua L. K., “On the representation of numbers as the sum of powers of primes”, Math. Z., 44 (1938), 335–346 | DOI | MR

[3] Khua Lo-gen, Metod trigonometricheskikh summ i ego primeneniya v teorii chisel, Mir, M., 1964, 194 pp.

[4] Kloosterman H. D., “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta mathematica, 49 (1926), 407–464 | DOI | MR

[5] Gritsenko S., Motkina N., Ternary Goldbach's Problem Involving Primes of a Special type, 25 Dec 2008, arXiv: 0812.4606

[6] Gritsenko S., Motkina N., Hua Loo Keng's Problem Involving Primes of a Special Type, 26 Dec 2008, arXiv: 0812.4665

[7] Gritsenko S. A., Motkina N. N., “Predstavlenie naturalnykh chisel summami chetyrekh kvadratov tselykh chisel spetsialnogo vida”, Sovremennaya matematika i ee prilozheniya, 67 (2010), 71–77

[8] Gritsenko S. A., Motkina N. N., “O vychislenii nekotorykh osobykh ryadov”, Chebyshevskii sbornik, 12:4 (2011), 85–92 | MR | Zbl

[9] D. Hilbert, “Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n$-ter Potenzen (Waringsches Problem)”, Math. Annalen, 67 (1909), 281–300 | DOI | MR | Zbl

[10] Hardy G., Collected papers of G. H. Hardy, including joint papers with J. E. Littlewood and others, ed. by a committee appointed by the London Mathematical Society, v. I, Clarendon Press, Oxford, 1966 | MR | Zbl

[11] Hardy G. H., Littlewood J. E., “A new solution of Waring's problem”, Quart. J. Math., 48 (1919), 272–293 | Zbl

[12] Hardy G., Littlewood J., “Some problems of «Partitio Numerorum». I: An ew solution of Waring's problem”, Göttingen nachrichten, 1920, 33–54 | Zbl

[13] Hardy G., Littlewood J., “Some problems of «Partitio Numerorum». III: On the expression of a number as a sum of primes”, Acta. Math., 44 (1923), 1–70 | DOI | MR | Zbl

[14] Hardy G., Littlewood J., “Some problems of «Partitio Numerorum». V: A further contribution to the study of Goldbach's problem”, Proc. Lond. Math. Soc. (2), 22 (1923), 46–56 | MR | Zbl

[15] Vinogradov I. M., “Sur un theoreme general de Waring”, Mat. sb., 31 (1922–1924), 490–507 (Rez. na rus. yaz.)

[16] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983, 240 pp. | MR

[17] Bukhshtab A. A., Teoriya chisel, Prosveschenie, M., 1966, 384 pp. | MR | Zbl

[18] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, Vyssh. shk., M., 1999, 695 pp.

[19] Von R., Metod Khardi–Littlvuda, Nauka, M., 1985, 184 pp. | MR

[20] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980, 160 pp. | MR