Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2014_15_3_a1, author = {E. M. Vechtomov and A. A. Petrov}, title = {Variety of semirings generated by two-element semirings with commutative idempotent multiplication}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {12--30}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a1/} }
TY - JOUR AU - E. M. Vechtomov AU - A. A. Petrov TI - Variety of semirings generated by two-element semirings with commutative idempotent multiplication JO - Čebyševskij sbornik PY - 2014 SP - 12 EP - 30 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a1/ LA - ru ID - CHEB_2014_15_3_a1 ER -
E. M. Vechtomov; A. A. Petrov. Variety of semirings generated by two-element semirings with commutative idempotent multiplication. Čebyševskij sbornik, Tome 15 (2014) no. 3, pp. 12-30. http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a1/
[1] Vernikov B. M., Volkov M. V., “Dopolneniya v reshetkakh mnogoobrazii i kvazimnogoobrazii”, Izv. vuzov. Matematika, 1982, no. 11, 17–20 | MR
[2] Vechtomov E. M., Vvedenie v polukoltsa, Izd-vo VGPU, Kirov, 2000, 44 pp.
[3] Vechtomov E. M., Petrov A. A., “Nekotorye mnogoobraziya kommutativnykh multiplikativno idempotentnykh polukolets”, Sovremennye problemy matematiki i ee prilozhenii, Trudy 45-i Mezhdunarodnoi molodezhnoi shkoly-konferentsii, posv. 75-letiyu V. I. Berdysheva (Ekaterinburg, 2014), 10–12
[4] Vechtomov E. M., Petrov A. A., “O mnogoobrazii polukolets s idempotentnym umnozheniem”, Algebra i logika: teoriya i prilozheniya, Tez. dokl. Mezhdunar. konf., posvyasch. pamyati V. P. Shunkova (Krasnoyarsk, 2013), 33–34
[5] Vechtomov E. M., Petrov A. A., “O podmnogoobraziyakh mnogoobraziya polukolets s polureshetochnym umnozheniem”, Algebra i matematicheskaya logika: teoriya i prilozheniya, Mater. Mezhdunar. konf. (Kazan, 2014), 155–156
[6] Vechtomov E. M., Petrov A. A., “O podpryamo nerazlozhimykh kommutativnykh multiplikativno idempotentnykh polukoltsakh”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, Tez. dokl. XI Mezhdunar. konf. (Saratov, 2013), 14–15
[7] Vechtomov E. M., Petrov A. A., “O polukoltsakh s polureshetochnym umnozheniem”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, Materialy XII Mezhdunarodnoi konf., posv. 80-letiyu prof. V. N. Latysheva (Tula, 2014), 154–157
[8] Vechtomov E. M., Petrov A. A., “Polukoltsa s kommutativnym idempotentnym umnozheniem”, Matematika v sovremennom mire, Materialy Mezhdunarodnoi konferentsii, posv. 150-letiyu D. A. Grave (Vologda, 2013), 10–11
[9] Kon P., Universalnaya algebra, Mir, M., 1968, 351 pp.
[10] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970, 392 pp.
[11] Petrov A. A., “Polukoltsa s usloviyami idempotentnosti”, Chebyshevskii sbornik, XIII:1(41) (2012), 118–129 | MR | Zbl
[12] Chermnykh V. V., “Functional representations of semirings”, Journal of Math. Sci. (New York), 187:2 (2012), 187–267 | DOI | MR | Zbl
[13] Ghosh S., “A characterization semirings which subdirect products of rings and distributive lattices”, Semigroup Forum, 59 (1999), 106–120 | DOI | MR | Zbl
[14] Kalman J. A., “Subdirect decomposition of distributive quasilattices”, Fund. Math., 71 (1971), 161–163 | MR | Zbl
[15] McKenzie R., Romanowska A., “Varieties of $\wedge$-distributive bisemilattices”, Contrib. Gen. Algebra, Proc. Klagefurt Conf. (Klagefurt, 1979), 213–218 | MR | Zbl
[16] Romanowska A., “On bisemilattices with one distributive law”, Algebra universalis, 10 (1980), 36–47 | DOI | MR | Zbl