Variety of semirings generated by two-element semirings with commutative idempotent multiplication
Čebyševskij sbornik, Tome 15 (2014) no. 3, pp. 12-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to investigation of an variety $\mathfrak N$ generated by two-element commutative multiplicatively idempotent semirings. Two classical theorems of Birkhoff (about the characterization of varieties of algebraic structures, and subdirect reducibility) are initial in the studying of semiring varieties. In 1971 J. A. Kalman proved that there exist up to isomorphism three subdirectly irreducible commutative idempotent semirings satisfying the dual distributive law $x+yz=(x+y)(x+z)$, namely a two-element field, a two-element mono-semiring, and the some three-element semiring. In 1999 S. Ghosh showed that any commutative multiplicatively idempotent semiring with identity $ x + 2xy = x $ is the subdirect product of a Boolean ring and a distributive lattice. In 1992 F. Guzman got a similar result for the variety of all multiplicatively idempotent semirings with zero and unit, satisfying the identity $ 1 + 2x = 1 $. It was proved that every such semiring is commutative. This one is the subdirect product of two-element fields and two-element chains and it may be generated by a single three-element semiring. We obtained the following results in the work. We proved some necessary conditions for subdirect irreducibility of semirings from the variety $\mathfrak M$ of all the semirings with commutative indempotent multiplication. It was shown that an arbitrary semiring from $\mathfrak M$ is subdirect product of two commutative multiplicatively idempotent semirings, one of which has the identity $ 3x = x, $ and the other has the identity $ 3x = 2x. $ We found all the subdirectly irreducible semirings in $\mathfrak N$ and discribed varieties in $\mathfrak N$. It was obtained that in the class $\mathfrak M$ the variety $\mathfrak N$ is defined by the single identity $x+2xy+yz=x+2xz+yz$. We proved that the lattice of all the subvarieties of the variety $\mathfrak N$ is a 16-element Boolean lattice. Bibliography: 16 titles.
Keywords: semiring, multiplicatively idempotent semiring, the variety of semirings.
@article{CHEB_2014_15_3_a1,
     author = {E. M. Vechtomov and A. A. Petrov},
     title = {Variety of semirings generated by two-element semirings with commutative idempotent multiplication},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {12--30},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a1/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - A. A. Petrov
TI  - Variety of semirings generated by two-element semirings with commutative idempotent multiplication
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 12
EP  - 30
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a1/
LA  - ru
ID  - CHEB_2014_15_3_a1
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A A. A. Petrov
%T Variety of semirings generated by two-element semirings with commutative idempotent multiplication
%J Čebyševskij sbornik
%D 2014
%P 12-30
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a1/
%G ru
%F CHEB_2014_15_3_a1
E. M. Vechtomov; A. A. Petrov. Variety of semirings generated by two-element semirings with commutative idempotent multiplication. Čebyševskij sbornik, Tome 15 (2014) no. 3, pp. 12-30. http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a1/

[1] Vernikov B. M., Volkov M. V., “Dopolneniya v reshetkakh mnogoobrazii i kvazimnogoobrazii”, Izv. vuzov. Matematika, 1982, no. 11, 17–20 | MR

[2] Vechtomov E. M., Vvedenie v polukoltsa, Izd-vo VGPU, Kirov, 2000, 44 pp.

[3] Vechtomov E. M., Petrov A. A., “Nekotorye mnogoobraziya kommutativnykh multiplikativno idempotentnykh polukolets”, Sovremennye problemy matematiki i ee prilozhenii, Trudy 45-i Mezhdunarodnoi molodezhnoi shkoly-konferentsii, posv. 75-letiyu V. I. Berdysheva (Ekaterinburg, 2014), 10–12

[4] Vechtomov E. M., Petrov A. A., “O mnogoobrazii polukolets s idempotentnym umnozheniem”, Algebra i logika: teoriya i prilozheniya, Tez. dokl. Mezhdunar. konf., posvyasch. pamyati V. P. Shunkova (Krasnoyarsk, 2013), 33–34

[5] Vechtomov E. M., Petrov A. A., “O podmnogoobraziyakh mnogoobraziya polukolets s polureshetochnym umnozheniem”, Algebra i matematicheskaya logika: teoriya i prilozheniya, Mater. Mezhdunar. konf. (Kazan, 2014), 155–156

[6] Vechtomov E. M., Petrov A. A., “O podpryamo nerazlozhimykh kommutativnykh multiplikativno idempotentnykh polukoltsakh”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, Tez. dokl. XI Mezhdunar. konf. (Saratov, 2013), 14–15

[7] Vechtomov E. M., Petrov A. A., “O polukoltsakh s polureshetochnym umnozheniem”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, Materialy XII Mezhdunarodnoi konf., posv. 80-letiyu prof. V. N. Latysheva (Tula, 2014), 154–157

[8] Vechtomov E. M., Petrov A. A., “Polukoltsa s kommutativnym idempotentnym umnozheniem”, Matematika v sovremennom mire, Materialy Mezhdunarodnoi konferentsii, posv. 150-letiyu D. A. Grave (Vologda, 2013), 10–11

[9] Kon P., Universalnaya algebra, Mir, M., 1968, 351 pp.

[10] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970, 392 pp.

[11] Petrov A. A., “Polukoltsa s usloviyami idempotentnosti”, Chebyshevskii sbornik, XIII:1(41) (2012), 118–129 | MR | Zbl

[12] Chermnykh V. V., “Functional representations of semirings”, Journal of Math. Sci. (New York), 187:2 (2012), 187–267 | DOI | MR | Zbl

[13] Ghosh S., “A characterization semirings which subdirect products of rings and distributive lattices”, Semigroup Forum, 59 (1999), 106–120 | DOI | MR | Zbl

[14] Kalman J. A., “Subdirect decomposition of distributive quasilattices”, Fund. Math., 71 (1971), 161–163 | MR | Zbl

[15] McKenzie R., Romanowska A., “Varieties of $\wedge$-distributive bisemilattices”, Contrib. Gen. Algebra, Proc. Klagefurt Conf. (Klagefurt, 1979), 213–218 | MR | Zbl

[16] Romanowska A., “On bisemilattices with one distributive law”, Algebra universalis, 10 (1980), 36–47 | DOI | MR | Zbl