On saturated formations of finite monounary algebras
Čebyševskij sbornik, Tome 15 (2014) no. 2, pp. 66-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of algebraic systems which is closed under homomorphic images and finite subdirect products is called a formation. Formations was widely used in group theory. Particularly, the saturated formations of groups is one of the most studied formations. A formation of finite groups is said to be a saturated formation if $G/\Phi(G) \in \mathfrak{F}$ implies $G \in \mathfrak{F}$ for an arbitrary finite group $G$ and it's Frattini subgroup $\Phi(G)$. A generalization of these definitions is as follows. A congruence $\theta$ on the algebraic system $A$ is called a Frattini congruence if the union of all $\theta$-classes generated by the elements of $B$ differs from $A$ for each proper subsystem $B$ of the algebraic system $A$. A class $\mathfrak{X}$ is saturated in the class $\mathfrak{Y}$, if $A \in \mathfrak{Y}$ and $A/\theta \in \mathfrak{X}$ for some Frattini congruence $\theta$ on $A$ implies $A \in \mathfrak{X}$. We consider finite formations of monounary algebras in this paper. An element $a$ of a monounary algebra $\langle A, f \rangle$ is cyclic if $f^n(a)=a$ for some positive integer $n$. A monounary algebra is cyclic if all of it's elements are cyclic. First we give a condition for a congruence of finite monounary algebra to be a Frattini congruence. Then we prove that the empty formation, the formation of all finite cyclic monounary algebras and the formation of all finite monounary algebras are the only saturated formations in the class of all finite monounary algebras. Bibliography: 17 titles.
Keywords: formation, monounary algebra, unar, saturated formation, Frattini congruence.
@article{CHEB_2014_15_2_a4,
     author = {A. L. Rasstrigin},
     title = {On saturated formations of finite monounary algebras},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {66--72},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a4/}
}
TY  - JOUR
AU  - A. L. Rasstrigin
TI  - On saturated formations of finite monounary algebras
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 66
EP  - 72
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a4/
LA  - ru
ID  - CHEB_2014_15_2_a4
ER  - 
%0 Journal Article
%A A. L. Rasstrigin
%T On saturated formations of finite monounary algebras
%J Čebyševskij sbornik
%D 2014
%P 66-72
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a4/
%G ru
%F CHEB_2014_15_2_a4
A. L. Rasstrigin. On saturated formations of finite monounary algebras. Čebyševskij sbornik, Tome 15 (2014) no. 2, pp. 66-72. http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a4/

[1] Shemetkov L. A., Skiba A. N., Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp. | MR

[2] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[3] Gaschütz W., “Zur theorie der endlichen auflösbaren Gruppen”, Mathematische Zeitschrift, 80:1 (1963), 300–305 | DOI | MR | Zbl

[4] Kiss E. W., Vovsi S. M., “Critical algebras and the Frattini congruence”, Algebra Universalis, 34:3 (1995), 336–344 | DOI | MR | Zbl

[5] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970, 392 pp. | MR

[6] Skornjakov L. A., “Unars”, Universal algebra (Esztergom, 1977), Colloq. Math. Soc. János Bolyai, 29, North-Holland, Amsterdam–New York, 1982 | MR

[7] Jakubíková-Studenovská D., Pócs J., Monounary Algebras, UPJŠ, Košice, 2009, 304 pp.

[8] Kartashov V. K., “O nekotorykh rezultatakh i nereshennykh zadachakh teorii unarnykh algebr”, Chebyshevskii sbornik, XII:2 (38) (2011), 18–26 | MR | Zbl

[9] Kartashov V. K., “Kvazimnogoobraziya unarov”, Mat. zametki, 27:1 (1980), 7–20 | MR | Zbl

[10] Rasstrigin A. L., “Formatsii konechnykh unarov”, Chebyshevskii sbornik, XII:2 (38) (2011), 102–109 | MR | Zbl

[11] Jakubíková-Studenovská D., Pócs J., “Formations of finite monounary algebras”, Algebra universalis, 68:3–4 (2012), 249–255 | MR | Zbl

[12] Jakubíková-Studenovská D., “On pseudovarieties of monounary algebras”, Asian-European Journal of Mathematics, 5:1 (2012), 10 pp. | MR

[13] Rasstrigin A. L., “O reshetkakh formatsii unarov”, Uchenye zapiski Orlovskogo gosudarstvennogo universiteta, 2012, no. 6 (50), 190–194

[14] Rasstrigin A. L., “O nasledstvennosti formatsii unarov”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:4 (2013), 108–113

[15] Yoeli M., “Subdirectly irreducible unary algebras”, Amer. Math. Monthly, 74 (1967), 957–960 | DOI | MR | Zbl

[16] Wenzel G. H., “Subdirect irreducibility and equational compactness in unary algebras $\langle A; f \rangle$”, Archiv der Mathematik, 21 (1970), 256–264 | DOI | MR | Zbl

[17] Burris S., Sankappanavar H. P., A Course in Universal Algebra, Graduate Texts in Mathematics, 78, Springer-Verlag, 1981 http://www.math.uwaterloo.ca/s̃nburris/htdocs/ualg.html | DOI | MR | Zbl