The problem of the conjugation of words in $HNN$-extension with a finite number entrance letters of a tree product of cyclic groups with cyclic amalgamation
Čebyševskij sbornik, Tome 15 (2014) no. 2, pp. 50-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work of the positive solution of the conjugation of words in $HNN$-extension with the system of entrance letters. The base $HNN$-extensions is a wood product of the infinite cyclic groups with cyclic subgroups. The result is a generalization of the conjugacy problem in $HNN$-extension of a wood product of cyclic groups associated cyclic subgroups with one entrance letter. The conjugacy problem for words is of interest in free designs groups. The problem was solved in free groups with cyclic subgroups by S. Lipshutz, in the $HNN$-extension of a free group by an associate of cyclic subgroups by A. Friedman, in $HNN$-extension of a tree product with the association cyclic groups associated with cyclic subgroups by author with V. N. Bezverkhny. In this paper a positive solution of the conjugation problem for words in $HNN$-extension with the system of entrance letters. The base $HNN$-extensions is a tree product of the infinite cyclic groups with cyclic subgroups. The result is a generalization of the conjugacy problem in $HNN$-extension of a wood product of cyclic groups associated cyclic subgroups with one entrance letters. Assertion is proved for any number of entrance letters using the method of mathematical induction. In the proof of the main theorem the author proved self result assertion : algorithmic solvability of intersection of finitely generated subgroup of the core group with an associated sub-group; algorithmic solvability of intersection of the related class of finitely generated subgroup of the core group with an associated sub-group. Bibliography: 13 titles.
Keywords: the group, the subgroup, the $HNN$-extension, the tree product, the conjugacy problem.
@article{CHEB_2014_15_2_a3,
     author = {E. S. Logacheva},
     title = {The problem of the conjugation of words in $HNN$-extension with a finite number entrance letters of a tree product of cyclic groups with cyclic amalgamation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {50--65},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a3/}
}
TY  - JOUR
AU  - E. S. Logacheva
TI  - The problem of the conjugation of words in $HNN$-extension with a finite number entrance letters of a tree product of cyclic groups with cyclic amalgamation
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 50
EP  - 65
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a3/
LA  - ru
ID  - CHEB_2014_15_2_a3
ER  - 
%0 Journal Article
%A E. S. Logacheva
%T The problem of the conjugation of words in $HNN$-extension with a finite number entrance letters of a tree product of cyclic groups with cyclic amalgamation
%J Čebyševskij sbornik
%D 2014
%P 50-65
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a3/
%G ru
%F CHEB_2014_15_2_a3
E. S. Logacheva. The problem of the conjugation of words in $HNN$-extension with a finite number entrance letters of a tree product of cyclic groups with cyclic amalgamation. Čebyševskij sbornik, Tome 15 (2014) no. 2, pp. 50-65. http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a3/

[1] Bezverkhnii V. N., “Reshenie problemy sopryazhennosti podgrupp v odnom klasse HNN-grupp”, Algoritmicheskie problemy teorii grupp i polugrupp i ikh prilozhenie, Mezhvuzovskii sbornik nauchnykh trudov, Tula, 1983, 50–80

[2] Bezverkhnii V. N., “Reshenie problemy vkhozhdeniya dlya odnogo klassa grupp”, Voprosy teorii grupp i polugrupp, TGPI im. L. N. Tolstogo, 1972, 3–86

[3] Bezverkhnii V. N., “Reshenie problemy sopryazhennosti podgrupp dlya odnogo klassa grupp. I; II”, Mezhvuzovskii sbornik, Sovremennaya algebra, 6, L., 1977, 16–32 | MR

[4] Bezverkhnii V. N., “O peresechenii konechno-porozhdennykh podgrupp svobodnoi gruppy”, Sbornik nauchnykh trudov kafedry vysshei matematiki, 2, Tulskii politekhnicheskii institut, 1974, 51–56

[5] Bezverkhnii V. N., “Reshenie problemy sopryazhennosti slov v nekotorykh klassakh grupp”, Algoritmicheskie problemy teorii grupp i polugrupp, Mezhvuzovskii sbornik nauchnykh trudov, Tula, 1990, 103–152 | MR

[6] Bezverkhnii V. N., Logacheva E. S., “Reshenie problemy sopryazhennosti podgrupp v odnom klasse HNN-grupp”, Izvestiya TulGU Ser. Matematika. Mekhanika. Informatika, 12:1 (2006), 83–101 | MR

[7] Bezverkhnii V. N., Logacheva E. S., “Problema sopryazhennosti slov v drevesnom proizvedenii svobodnykh grupp s tsiklicheskim ob'edineniem”, Chebyshevskii sbornik, 15:1(49) (2014), 32–44

[8] Logacheva E. S., “Problema sopryazhennosti podgrupp v svobodnom proizvedenii beskonechnykh tsiklicheskikh grupp”, Chebyshevskii sbornik, 14:1(45) (2013), 61–70 | MR

[9] Logacheva E. S., “Problema sopryazhennosti podgrupp v svobodnom proizvedenii beskonechnykh tsiklicheskikh grupp”, Izvestiya TulGU. Estestvennye nauki, 2013, no. 2(1), 19–40

[10] Logacheva E. S., “Problema sopryazhennosti v drevesnom proizvedenii grupp”, Algebra i teoriya chisel, Materialy XII Mezhdunar. konf. (2014), 85–88

[11] Lipshutz S., “The congugacy problem and cyclic amalgamations”, Bull. Amer. Math. Soc., 1973, 114–116

[12] Fridman A. A., “Reshenie problemy sopryazhennosti v odnom klasse grupp”, Trudy MIAN, 133, 1973, 233–242 | MR | Zbl

[13] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR