About one analog of the additive divisor problem with quadratic forms
Čebyševskij sbornik, Tome 15 (2014) no. 2, pp. 33-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the number theory additive problems is very important. One of them is the Ingam binary additive divisor problem on the representation of natural number as the difference of product of numbers. Many mathematician like T. Esterman, D. I. Ismoilov, D. R. Heath-Brown, G. I. Arkhipov and V. N. Chubarikov, J.-M. Deshouillers and H. Iwaniec improved the remainder term in the asymptotic formula of the number of solution of this diophantine equation. In present paper one problem with quadratic forms is considered. This problem is analog of the Ingam binary additive divisor problem. Let $d$ — negative square-free number, $F={Q}(\sqrt{d})$ — imaginary quadratic field, $\delta_{F}$ — discriminant of field $F$, $Q_{1}(\overline{m})$, $Q_{2}(\overline{k})$ — binary positive defined primitive quadratic forms with matrixes $A_{1}$, $A_{2}$, $\det A_{1}=\det A_{2}=-\delta_{F}$, $\varepsilon>0$ — arbitrarily small number; $n\in \mathbb{N}$, $h \in \mathbb{N}$. The asymptotical formula of the number of solution of diophantine equation $Q_{1}(\overline{m})-Q_{2}(\overline{k})=h$ with weight coefficient $\exp\left({-({Q_{1}(\overline{m})+Q_{2}(\overline{k})})/{n}}\right)$ is received. In this asymptotical formula discriminant of field $\delta_F$ is fixed and the remainder term is estimating as $O(h^{\varepsilon}n^{3/4+\varepsilon})$, which not depend of $\delta_F$. Moreover the parameter $h$ grow as $O(n)$ with growing on the main parameter $n$. Proof of the asymptotical formula based on circular method when sum, which is solution of diophantine equation, may be representing as integral. Interval of integration divided by numbers of Farey series. The taking weight coefficient allow to use the functional equation of the theta-function. Moreover the estimation of one sum with Gauss sums is important. Using the evident formula of some product of Gauss sums of the number which coprimes of discriminant of field this sum represented of Kloosterman's sum which estimate by A. Weil. Bibliography: 16 titles.
Keywords: additive problems of number theory, asymptotic formula, Kloosterman's sum, quadratic form.
@article{CHEB_2014_15_2_a2,
     author = {L. N. Kurtova},
     title = {About one analog of the additive divisor problem with quadratic forms},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {33--49},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a2/}
}
TY  - JOUR
AU  - L. N. Kurtova
TI  - About one analog of the additive divisor problem with quadratic forms
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 33
EP  - 49
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a2/
LA  - ru
ID  - CHEB_2014_15_2_a2
ER  - 
%0 Journal Article
%A L. N. Kurtova
%T About one analog of the additive divisor problem with quadratic forms
%J Čebyševskij sbornik
%D 2014
%P 33-49
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a2/
%G ru
%F CHEB_2014_15_2_a2
L. N. Kurtova. About one analog of the additive divisor problem with quadratic forms. Čebyševskij sbornik, Tome 15 (2014) no. 2, pp. 33-49. http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a2/

[1] Ingham A. E., “Some asymptotic formulae in the theory of numbers”, J. London Math. Soc., 2:7 (1927), 202–208 | DOI | MR | Zbl

[2] Estermann T., “Über die Darstellung einer Zahl als Differenz von zwei Produkten”, J. Reine Angew. Math., 164 (1931), 173–182

[3] Ismoilov D. I., “Ob asimptotike predstavleniya chisel kak raznosti dvukh proizvedenii”, Dokl. AN Tadzh. SSR, 22:2 (1979), 75–79 | MR | Zbl

[4] Weil A., “On some exponential sums”, Proc. Nat. Acad. of Sci., 34 (1948), 204–207 | DOI | MR | Zbl

[5] Estermann T., “On Klostermann's sum”, Mathematika, 8 (1961), 83–86 | DOI | MR | Zbl

[6] Heath-Brown D. R., “The fourths power moment of the Riemann zeta-function”, Proc. London Math. Soc., 38:3 (1979), 385–422 | DOI | MR | Zbl

[7] Arkhipov G. I., Chubarikov V. N., “Ob additivnoi probleme delitelei Ingama”, Vestnik Moskovskogo universiteta. Cer. 1. Matematika. Mekhanika, 2006, no. 5, 32–35 | MR | Zbl

[8] Kuznetsov N. V., “Gipoteza Petersona dlya parabolicheskikh form vesa nul i gipoteza Linnika. Summy summ Kloostermana”, Mat. sbornik, 111(153):3 (1980), 334–383 | MR | Zbl

[9] Deshouillers J.-M., Iwaniec H., “An additive divisor problem”, J. London Math. Soc., 26:2 (1982), 1–14 | DOI | MR | Zbl

[10] Linnik Yu. V., Dispersionnyi metod v binarnykh additivnykh zadachakh, Izd-vo LGU, L., 1961, 208 pp. | MR

[11] Kurtova L. N., “Ob odnoi binarnoi additivnoi zadache s kvadratichnymi formami”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya seriya. Matematika, 2007, no. 7 (57), 107–121

[12] Ogg A. P., Modular Forms and Dirichlet Series, W.A. Benjamin Inc., N.-Y., 1969, 211 pp. | MR | Zbl

[13] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Uchebnoe posobie dlya studentov mekhanicheskikh spetsialnostei mekhaniko-matematicheskikh fakultetov gosudarstvennykh universitetov, Fizmatlit, M., 1958, 678 pp. | MR

[14] Gritsenko S. A., “O funktsionalnom uravnenii odnogo arifmeticheskogo ryada Dirikhle”, Chebyshevskii sbornik, 4:2 (2003), 53–67 | MR

[15] Vinogradov I. M., Osnovy teorii chisel, Lan, SPb.-M., 2004, 167 pp.

[16] Malyshev A. V., “O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami”, Tr. MIAN SSSR, 65, 1962, 3–212