Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2014_15_2_a1, author = {P. O. Kasyanov and L. S. Paliichuk and A. N. Tkachuk}, title = {Method of multivalued operator semigroup to investigate the long-term forecasts for controlled piezoelectric fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {21--32}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a1/} }
TY - JOUR AU - P. O. Kasyanov AU - L. S. Paliichuk AU - A. N. Tkachuk TI - Method of multivalued operator semigroup to investigate the long-term forecasts for controlled piezoelectric fields JO - Čebyševskij sbornik PY - 2014 SP - 21 EP - 32 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a1/ LA - ru ID - CHEB_2014_15_2_a1 ER -
%0 Journal Article %A P. O. Kasyanov %A L. S. Paliichuk %A A. N. Tkachuk %T Method of multivalued operator semigroup to investigate the long-term forecasts for controlled piezoelectric fields %J Čebyševskij sbornik %D 2014 %P 21-32 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a1/ %G ru %F CHEB_2014_15_2_a1
P. O. Kasyanov; L. S. Paliichuk; A. N. Tkachuk. Method of multivalued operator semigroup to investigate the long-term forecasts for controlled piezoelectric fields. Čebyševskij sbornik, Tome 15 (2014) no. 2, pp. 21-32. http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a1/
[1] Liu Z., Migórski S., “Noncoercive Damping in Dynamic Hemivariational Inequality with Application to Problem of Piezoelectricity”, Discrete and Continuous Dynamical Systems Series B, 9:1 (2008), 129–143 | MR | Zbl
[2] Gorban N. V., Kapustyan V. O., Kasyanov P. O., Paliichuk L. S., “On Global Attractors for Autonomous Damped Wave Equation with Discontinuous Nonlinearity”, Continuous and Distributed Systems: Theory and Applications, eds. V. A. Sadovnichiy, M. Z. Zgurovsky, Springer-Verlag, 2013, 221–237
[3] Zgurovsky M. Z., Kasyanov P. O., Paliichuk L. S., “Automatic feedback control for one class of contact piezoelectric problems”, System Analysis and Information Technologies, 2014, no. 1, 56–68
[4] Kasyanov P. O., Paliichuk L. S., “Trajectory behavior of weak solutions of the piezoelectric problem with discontinuous interaction function on the phase variable”, Research Bulletin of NTUU “KPI”, 2 (2014)
[5] Clarke F. H., Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983, 308 pp. | MR | Zbl
[6] Zgurovsky M. Z., Kasyanov P. O., Zadoianchuk N. V., “Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem”, Applied Mathematics Letters, 25 (2012), 1569–1574 | DOI | MR | Zbl
[7] Zgurovsky M. Z., Kasyanov P. O., Kapustyan O. V., Valero J., Zadoianchuk N. V., Evolution Inclusions and Variation Inequalities for Earth Data Processing, v. III, Springer-Verlag, Berlin, 2012, 330 pp. | Zbl
[8] Kalita P., Łukaszewicz G., “Global attractors for multivalued semiflows with weak continuity properties”, Nonlinear Analysis, 101 (2014), 124–143 | DOI | MR | Zbl
[9] Ball J. M., “Global attaractors for damped semilinear wave equations”, DCDS, 10 (2004), 31–52 | DOI | MR | Zbl
[10] Vishik M., Chepyzhov V., “Trajectory and Global Attractors of Three-Dimensional Navier–Stokes Systems”, Mathematical Notes, 71:1–2 (2002), 177–193 | DOI | MR | Zbl
[11] Ball J. M., “Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations”, Journal of Nonlinear Sciences, 7:5 (1997), 475–502 | DOI | MR | Zbl
[12] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988, 500 pp. | MR | Zbl
[13] Melnik V. S., Valero J., “On attractors of multivalued semi-flows and differential inclusions”, Set-Valued Analysis, 6:1 (1998), 83–111 | DOI | MR
[14] Kasyanov P. O., Zadoyanchuk N. V., “Dinamika reshenii klassa avtonomnykh evolyutsionnykh vklyuchenii vtorogo poryadka”, Kibernetika i sistemnyi analiz, 2012, no. 3, 111–126
[15] Kasyanov P. O., “Multivalued dynamics of solutions of autonomous operator differential equations with pseudomonotone nonlinearity”, Mathematical Notes, 92:1–2 (2012), 205–218 | DOI | MR | Zbl
[16] Kasyanov P. O., Zadoyanchuk N. V., “Svoistva reshenii evolyutsionnykh vklyuchenii vtorogo poryadka s otobrazheniyami psevdomonotonnogo tipa”, Zhurnal vychislitelnoi i prikladnoi matematiki, 2010, no. 3(102), 63–78