To the Post’s coset theorem
Čebyševskij sbornik, Tome 15 (2014) no. 2, pp. 6-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of polyadic groups plays an important role groups $A^*$ and $A_0$, appearing in Post's Coset Theorem [2], asserts that for every $n$-ary groups $\langle A, [~] \rangle$ exists a group of $A^*$, in which there is normal subgroup $A_0$ such that the factor group $A^* / A_0$ — cyclic group of order $n-1$. Generator $xA_0$ this cyclic group is the $n$-ary group with $n$-ary operation derived from operation in the group $A^*$, wherein $n$-ary groups $\langle A, [~] \rangle$ and $\langle xA_0, [~] \rangle$ isomorphic. Group $A^*$ is called the Post's universal covering group, and the group $A_0$ — appropriate group. The article begins with a generalization of the Post's Coset Theorem: for every $n$-ary groups $\langle A, [~] \rangle$, $n = k(m-1)+1$, the Post's universal covering group $A^*$ has a normal subgroup $^m \!A$ such that the factor group $A^* / ^m \!A$ — cyclic group of order $m-1$. Moreover, $A_0 \subseteq ~^m \!A \subseteq A^*$ and $^m \!A / A_0$ - cyclic group of order $k$. In this paper we study the permutability of elements in $n$-ary group. In particular, we study the $m$-semi-commutativity in $n$-ary groups, which is a generalization of of the well-known concepts of commutativity and semi-commutativity. Recall that the $n$-ary group $\langle A, [~] \rangle$ is called abelian if it contains any substitution $\sigma$ of the set $\{1,2, \ldots, n \}$ true identity $$ [a_1a_2 \ldots a_n] = [a_{\sigma (1)} a_{\sigma (2)} \ldots a_{\sigma (n)}], $$ and $n$-ary group $\langle A, [~] \rangle$ is called a semi-abelian if it true identity $$ [aa_1 \ldots a_{n-2} b] = [ba_1 \ldots a_{n-2} a]. $$ Summarizing these two definitions, E. Post called $n$-ary group $\langle A, [~] \rangle$ $m$-semi-abelian if $m-1$ divides $n-1$ and $$ (aa_1 \ldots a_{m-2} b, ba_1 \ldots a_{m-2} a) \in \theta_A $$ for any $a, a_1, \ldots, a_{m-2}, b \in A$. We have established a new criterion of $m$-semi-commutativity of $n$-ary group, formulated by a subgroup $^m \!A$ of the Post's universal covering group: $n$-ary group $\langle A, [~] \rangle$ is $m$-semi-abelian if and only if the group $^m \! A$ is abelian. For $n = k(m-1)+1$ by fixed elements $c_1, \ldots, c_{m-2} \in A$ on $n$-ary group of $\langle A, [~] \rangle$ construct $(k+1)$-ary group $\langle A, [~]_{k+1, c_1 \ldots c_{m- 2}} \rangle$. On the coset $A^{(m-1)}$ in generalized Post's Coset Theorem construct $(k+1)$-ary group $\langle A^{(m-1)}, [~]_{k+1} \rangle$. Proved isomorphism of constructed $(k+1)$-ary groups. This isomorphism allows us to prove another criterion $m$-semi-commutativity $n$-ary group: $n$-ary group $\langle A, [~] \rangle$ is $m$-semi-abelian if and only if for some $c_1, \ldots, c_{m-2} \in A$ $(k+1)$-ary group $\langle A, [~]_{k+1, c_1 \ldots c_{m-2}} \rangle$ is abelian. Bibliography: 16 titles.
Keywords: $n$-ary group, semi-commutativity, coset.
@article{CHEB_2014_15_2_a0,
     author = {A. M. Gal'mak and N. A. Shchuchkin},
     title = {To the {Post{\textquoteright}s} coset theorem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {6--20},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a0/}
}
TY  - JOUR
AU  - A. M. Gal'mak
AU  - N. A. Shchuchkin
TI  - To the Post’s coset theorem
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 6
EP  - 20
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a0/
LA  - ru
ID  - CHEB_2014_15_2_a0
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%A N. A. Shchuchkin
%T To the Post’s coset theorem
%J Čebyševskij sbornik
%D 2014
%P 6-20
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a0/
%G ru
%F CHEB_2014_15_2_a0
A. M. Gal'mak; N. A. Shchuchkin. To the Post’s coset theorem. Čebyševskij sbornik, Tome 15 (2014) no. 2, pp. 6-20. http://geodesic.mathdoc.fr/item/CHEB_2014_15_2_a0/

[1] Post E. L., “Poluadic groups”, Trans. Amer. Math. Soc., 48 (1940), 208–350 | DOI | MR

[2] Sushkevich A. K., Teoriya obobschennykh grupp, Khoztekhizdat, Kharkov–Kiev, 1937

[3] Gleichgewicht B., Glasek K., “Remarks on $n$-groups as abstract algebras”, Coll. Math., 17 (1967), 209–219 | MR | Zbl

[4] Galmak A. M., “Ob opredelenii $n$-arnoi gruppy”, Mezhdunar. algebr. konf., posvyasch. pamyati A. I. Shirshova, tez. dokl. (Novosibirsk, 20–25 avg. 1991), In-t mat. Sib. otdeleniya AN SSSR, Altaiskii gos. un-t, Novosibirsk, 1991, 30

[5] Usan J., “$n$-Groups as variety of type $,n-1,n-2>$”, Algebra and Model Theory, Novosibirsk, 1997, 182–208

[6] Kurosh A. G., Obschaya algebra. Lektsii 1969–1970 uch. goda, Nauka, M., 1974 | MR

[7] Bruck R. A., A Survey of binary systems, Springer, Berlin–Heidelberg–New York, 1971 | Zbl

[8] A. M. Galmak, $n$-Arnye gruppy, v. I, GGU im. F. Skoriny, Gomel, 2003, 196 pp.

[9] Galmak A. M., Kongruentsii poliadicheskikh grupp, Belaruskaya navuka, Minsk, 1999

[10] Artamonov V. A., “Svobodnye $n$-gruppy”, Mat. zametki, 8:4 (1970), 499–507 | MR

[11] Artamonov V. A., “O shraierovykh mnogoobraziyakh $n$-grupp i $n$-polugrupp”, Trudy seminara im. G. I. Petrovskogo, 5, 1979, 193–202 | MR

[12] Rusakov S. A., Algebraicheskie $n$-arnye sistemy, Navuka i tekhnika, Mn., 1992, 245 pp.

[13] Schuchkin N. A., “Svobodnye abelevy $n$-arnye gruppy”, Chebyshevskii sbornik, 12:2 (38) (2011), 163–170 | MR

[14] Schuchkin N. A., “Razreshimye i nilpotentnye $n$-gruppy”, Algebraicheskie sistemy, sb. nauch. tr., Peremena, Volgograd, 1989, 133–139

[15] Dornte W., “Untersuchungen uber ainen verallgemeinerten Gruppenbegrief”, Math. Z., 29 (1928), 1–19 | DOI | MR | Zbl

[16] Galmak A. M., Vorobev G. N., “O teoreme Posta–Gluskina–Khossu”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1(14), 55–60