Generating sets of the $n$-ary groups
Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 89-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

Definition of $ n $-ary group is obtained from the definition of group by replacement of associative and reversible binary operation on $ n $-ary associative operation, uniquely reversible at each site. In this paper we study the connection between the generating sets $ n $-ary group and the generating sets the group to which reducible given $ n $-ary group, according to Post–Gluskin–Hossu theorem. In the first part of the article describes the process that allows knowing the generating set of the group to which this is reducible $ n $-ary group in accordance with this theorem, find a generating set of the most $ n $-ary group. We prove that if the group $\langle A,\circ_a\rangle$, obtained by an element $a$ of $n$-ary group $\langle A,[~]\rangle$ in accordance with Post–Gluskin–Hossu theorem, generated by a set $ M $, then $ n $-ary group $\langle A,[~]\rangle$ generated by a set $M\cup\{a\}$. $ n $-Ary group $\langle A,[~]\rangle$ called derived of group $ A $, if $$[a_1a_2\ldots a_n]=a_1a_2\ldots a_n$$ for any $a_1,a_2,\ldots, a_n\in A$. Found conditions under which generating sets the group and $ n $-ary group, derived of this group, are identical. We prove that the $ n $-ary group $\langle A,[~]\rangle$, derived of group $\langle A,\circ\rangle$ with identity $ e $ and generating set $ M $, is generated by a set $ M $ too, if $$c_1\circ c_2\circ\ldots\circ c_{m(n-1)+1}=e$$ for some $c_1,c_2,\ldots, c_{m(n-1)+1}\in M$, $m\geq 1$. From this we deduce corollary: $ n $-ary group $\langle A,[~]\rangle$, derived of group $\langle A,\circ\rangle$ finite period $m(n-1)+1\geq 3$ with generating set $ M $, is generated by a set $ M $ too. In specifically, $ n $-ary group $\langle A,[~]\rangle$, derived of cyclic group $\langle A,\circ\rangle$ of order $m(n-1)+1\geq 3$ is cyclic and is generated by the same element that group $\langle A,\circ\rangle$. Are a few examples of finding generating sets for $ n $-ary groups. In the second part we study the inverse problem of finding generators sets of binary groups, if we know the generating sets of $ n $-ary groups from which this binary groups are obtained (according to the Post–Gluskin–Hossu theorem). Proved that the group $\langle A,\circ_a\rangle$, obtained by an element $ a $ of $ n $-ary group $\langle A,[~]\rangle$ with generating set $ M $, generated by the set $M\cup\{d=[\underbrace{a\ldots a}_n]\}$, if the automorphism $\beta(x)=[ax\bar a\underbrace{a\ldots a}_{n-3}]$ of group $\langle A,\circ_a\rangle$ is satisfied \begin{equation} M^{\beta}=\{[aM\bar a\underbrace{a\ldots a}_{n-3}]\}\subseteq M. \label{a1'} \end{equation} From this we have the corollary: let $ n $-ary group $\langle A,[~]\rangle$ generated by a set $ M $, satisfying (1) for some $a\in M$. Then: the group $\langle A,\circ_a\rangle$ generated by the set $(M\diagdown\{a\})\cup\{d\};$ if $ a $ – idempotent in $\langle A,[~]\rangle$, then the group $\langle A,\circ_a\rangle$ generated by the set $M\diagdown\{a\}$. At the end of the work described generating sets of binary groups $\langle A,\circ_a\rangle$, found from the known generating sets of $ n $-ary groups $\langle A,[~]\rangle$ with nonempty center $Z(A)$.
Keywords: $n$-ary group, generatjngs sets, automorphism.
@article{CHEB_2014_15_1_a8,
     author = {A. M. Gal'mak and N. A. Shchuchkin},
     title = {Generating sets of the $n$-ary groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {89--109},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a8/}
}
TY  - JOUR
AU  - A. M. Gal'mak
AU  - N. A. Shchuchkin
TI  - Generating sets of the $n$-ary groups
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 89
EP  - 109
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a8/
LA  - ru
ID  - CHEB_2014_15_1_a8
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%A N. A. Shchuchkin
%T Generating sets of the $n$-ary groups
%J Čebyševskij sbornik
%D 2014
%P 89-109
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a8/
%G ru
%F CHEB_2014_15_1_a8
A. M. Gal'mak; N. A. Shchuchkin. Generating sets of the $n$-ary groups. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 89-109. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a8/

[1] Dörnte W., “Untersuchungen über einen verallgemeinerten Gruppenbegrieff”, Math. Z., 29 (1928), 1–19 | DOI | MR | Zbl

[2] Post E. L., “Poluadic groups”, Trans. Amer. Math. Soc., 48 (1940), 208–350 | DOI | MR

[3] Tyutin V. I., “K aksiomatike $n$-arnykh grupp”, Dokl. AN BSSR, 29:8 (1985), 691–693 | MR | Zbl

[4] Galmak A. M., “Ob opredelenii $n$-arnoi gruppy”, Mezhdunar. konf. po algebre, tez. dokl., Novosibirsk, 1991, 30

[5] Galmak A. M., $n$-Arnye gruppy, v. 2, Izd. tsentr BGU, Minsk, 2007, 324 pp.

[6] Galmak A. M., $n$-Arnye gruppy, v. I, GGU im. F. Skoriny, Gomel, 2003, 196 pp.

[7] Gluskin L. M., “Pozitsionnye operativy”, Mat. sbornik, 68 (110):3 (1965), 444–472 | MR | Zbl

[8] Hosszu M., “On the explicit form of $n$-group operacions”, Publ. Math., 10:1–4 (1963), 88–92 | MR

[9] Galmak A. M., Vorobev G. N., Ternarnye gruppy otrazhenii, Belaruskaya navuka, Minsk, 1998, 128 pp.

[10] Schuchkin N. A., “Podgruppy v polutsiklicheskikh $n$-arnykh gruppakh”, Fundamentalnaya i prikladnaya matematika, 15:2 (2009), 211–222

[11] Kusov V. M., Schuchkin N. A., “Svobodnye abelevy polutsiklicheskie $n$-arnye gruppy”, Chebyshevskii sbornik, XII:2(38) (2011), 68–76 | MR | Zbl

[12] Kokseter G. S. M., Mozer U. O. Dzh., Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980, 240 pp. | MR

[13] Rusakov S. A., Algebraicheskie $n$-arnye sistemy, Navuka i tekhnika, Mn., 1992, 245 pp.

[14] Schuchkin N. A., “Polutsiklicheskie $n$-arnye gruppy”, Izvestiya GGU im. F. Skoriny, 2009, no. 3(54), 186–194