On the Baer--Kaplansky theorem for torsion free groups with quadratic splitting fields
Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 77-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The connection between the structure of abelian group and the structure of endomorphism ring is a classic question in abelian group theory. In particular, Baer and Kaplansky proved that this connection is very strong for torsion groups: two abelian torsion groups are isomorphic if and only if their endomorphism rings are isomorphic. In more general cases for torsion-free and mixed abelian groups the Baer–Kaplansky theorem is not true. This paper deals with the class of $p$-local torsion-free abelian groups of finite rank. Let $K$ be a field such that $\mathbb{Q}\subset K\subset\widehat{\mathbb{Q}}_p$ and let $R=K\cap\widehat{\mathbb{Z}}_p,$ where $\widehat{\mathbb{Z}}_p$ is the ring of $p$-adic integers, $\widehat{\mathbb{Q}}_p$ is the field of $p$-adic numbers, $\mathbb{Q}$ is the field of rational numbers. We say that $K$ is a splitting field ($R$ is a splitting ring) for a $p$-local torsion-free reduced group $A$ or that a group $A$ is $K$-decomposable group if $A\otimes_{\mathbb{Z}_p}R$ is the direct sum of a divisible $R$-module and a free $R$-module. Torsion-free $p$-local abelian groups of finite rank with quadratic splitting field $K$ are characterized. As an application it is proved that $K$-decomposable $p$-local torsion free abelian groups of finite rank are isomorphic if and only if their endomorphism rings are isomorphic.
Keywords: abelian group, splitting field, splitting group.
@article{CHEB_2014_15_1_a7,
     author = {S. V. Vershina},
     title = {On the {Baer--Kaplansky} theorem for torsion free groups with quadratic splitting fields},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a7/}
}
TY  - JOUR
AU  - S. V. Vershina
TI  - On the Baer--Kaplansky theorem for torsion free groups with quadratic splitting fields
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 77
EP  - 88
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a7/
LA  - ru
ID  - CHEB_2014_15_1_a7
ER  - 
%0 Journal Article
%A S. V. Vershina
%T On the Baer--Kaplansky theorem for torsion free groups with quadratic splitting fields
%J Čebyševskij sbornik
%D 2014
%P 77-88
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a7/
%G ru
%F CHEB_2014_15_1_a7
S. V. Vershina. On the Baer--Kaplansky theorem for torsion free groups with quadratic splitting fields. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a7/

[1] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1977, 335 pp.

[2] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977, 416 pp.

[3] Fomin A. A., “Tenzornoe proizvedenie abelevykh grupp bez krucheniya”, Sib. matem. zhurn., 16:4 (1975), 869–878 | MR

[4] Farukshin V. Kh., “Lokalnye abelevy gruppy bez krucheniya”, Fundament. i prikl. matem., 17:8 (2012), 147–152 | MR

[5] Baer R., “Automorphism rings of primary abelian operator groups”, Ann. Math., 44 (1943), 192–227 | DOI | MR | Zbl

[6] Kaplansky I., “Some results on abelian groups”, Proc. Nat. Acad. Sci. USA, 38 (1952), 538–540 | DOI | MR | Zbl

[7] Mikhalev A. V., “Isomorphisms and anti-isomorphisms of endomorphism rings of modules”, Proc. Moscow-Tainan Algebra Workshop, Walter de Gruyter, Berlin, 1996, 65–116 | MR

[8] Sebeldin A. M., “Usloviya izomorfizma vpolne razlozhimykh abelevykh grupp bez krucheniya s izomorfnymi koltsami endomorfizmov”, Matem. Zametki, 11:4 (1972), 402–408 | MR

[9] Blagoveshchenskaya E., Ivanov G., Schultz P., “The Baer–Kaplansky theorem for almost completely decomposable groups”, Contemp. Math., 273, 2001, 85–93 | DOI | MR | Zbl

[10] May W., “The theorem of Baer and Kaplansky for mixed modules”, Journal of Algebra, 77:1 (1995), 255–263 | DOI | MR

[11] Wolfson K., “Isomorphism of the endomorphism rings of torsion-free modules”, Proc. Amer. Math. Soc., 13 (1962), 712–714 | DOI | MR

[12] Files S. T., Wickless W., “The Baer–Kaplansky theorem for a class of mixed abelian groups”, Rocky Mountain J. Math., 26:2 (1996), 593–613 | DOI | MR | Zbl

[13] Wickless W. J., “The Baer–Kaplansky theorem to direct sums of self-small mixed groups”, Abelian groups and modules (Dublin, 1998), Birkäuser, Basel, 1999, 101–106 | DOI | MR | Zbl

[14] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, I”, Journal of Algebra, 49:1 (1977), 261–275 | DOI | MR | Zbl

[15] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, II”, Journal of Algebra, 66 (1980), 281–306 | DOI | MR | Zbl

[16] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, III”, Journal of Algebra, 66 (1980), 307–320 | DOI | MR | Zbl

[17] Vershina S. V., “Gruppy rasschepleniya nerazlozhimykh $p$-lokalnykh grupp bez krucheniya”, Algebra i logika: teoriya i prilozheniya, Materialy mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu V. P. Shunkova (Krasnoyarsk, 2013), 25–26

[18] Ivanov A. M., “Ob odnom svoistve $p$-servantnykh podgrupp gruppy tselykh $p$-adicheskikh chisel”, Matematicheskie zametki, 27:6 (1980), 859–867 | MR | Zbl

[19] Farukshin V. Kh., “Local abelian torsion-free groups”, Journal of Mathematical Sciences, 195:5 (2014), 684–687 | DOI