Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2014_15_1_a7, author = {S. V. Vershina}, title = {On the {Baer--Kaplansky} theorem for torsion free groups with quadratic splitting fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {77--88}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a7/} }
S. V. Vershina. On the Baer--Kaplansky theorem for torsion free groups with quadratic splitting fields. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a7/
[1] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1977, 335 pp.
[2] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977, 416 pp.
[3] Fomin A. A., “Tenzornoe proizvedenie abelevykh grupp bez krucheniya”, Sib. matem. zhurn., 16:4 (1975), 869–878 | MR
[4] Farukshin V. Kh., “Lokalnye abelevy gruppy bez krucheniya”, Fundament. i prikl. matem., 17:8 (2012), 147–152 | MR
[5] Baer R., “Automorphism rings of primary abelian operator groups”, Ann. Math., 44 (1943), 192–227 | DOI | MR | Zbl
[6] Kaplansky I., “Some results on abelian groups”, Proc. Nat. Acad. Sci. USA, 38 (1952), 538–540 | DOI | MR | Zbl
[7] Mikhalev A. V., “Isomorphisms and anti-isomorphisms of endomorphism rings of modules”, Proc. Moscow-Tainan Algebra Workshop, Walter de Gruyter, Berlin, 1996, 65–116 | MR
[8] Sebeldin A. M., “Usloviya izomorfizma vpolne razlozhimykh abelevykh grupp bez krucheniya s izomorfnymi koltsami endomorfizmov”, Matem. Zametki, 11:4 (1972), 402–408 | MR
[9] Blagoveshchenskaya E., Ivanov G., Schultz P., “The Baer–Kaplansky theorem for almost completely decomposable groups”, Contemp. Math., 273, 2001, 85–93 | DOI | MR | Zbl
[10] May W., “The theorem of Baer and Kaplansky for mixed modules”, Journal of Algebra, 77:1 (1995), 255–263 | DOI | MR
[11] Wolfson K., “Isomorphism of the endomorphism rings of torsion-free modules”, Proc. Amer. Math. Soc., 13 (1962), 712–714 | DOI | MR
[12] Files S. T., Wickless W., “The Baer–Kaplansky theorem for a class of mixed abelian groups”, Rocky Mountain J. Math., 26:2 (1996), 593–613 | DOI | MR | Zbl
[13] Wickless W. J., “The Baer–Kaplansky theorem to direct sums of self-small mixed groups”, Abelian groups and modules (Dublin, 1998), Birkäuser, Basel, 1999, 101–106 | DOI | MR | Zbl
[14] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, I”, Journal of Algebra, 49:1 (1977), 261–275 | DOI | MR | Zbl
[15] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, II”, Journal of Algebra, 66 (1980), 281–306 | DOI | MR | Zbl
[16] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, III”, Journal of Algebra, 66 (1980), 307–320 | DOI | MR | Zbl
[17] Vershina S. V., “Gruppy rasschepleniya nerazlozhimykh $p$-lokalnykh grupp bez krucheniya”, Algebra i logika: teoriya i prilozheniya, Materialy mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu V. P. Shunkova (Krasnoyarsk, 2013), 25–26
[18] Ivanov A. M., “Ob odnom svoistve $p$-servantnykh podgrupp gruppy tselykh $p$-adicheskikh chisel”, Matematicheskie zametki, 27:6 (1980), 859–867 | MR | Zbl
[19] Farukshin V. Kh., “Local abelian torsion-free groups”, Journal of Mathematical Sciences, 195:5 (2014), 684–687 | DOI