Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2014_15_1_a6, author = {E. A. Vassilieva}, title = {On {Jack{\textquoteright}s} connection coefficients and their computation}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {65--76}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a6/} }
E. A. Vassilieva. On Jack’s connection coefficients and their computation. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 65-76. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a6/
[1] F. Bédard, A. Goupil, “The poset of conjugacy classes and decomposition of products in the symmetric group”, Can. Math. Bull., 35:2 (1992), 152–160 | DOI | MR
[2] J. Dénes, “The representation of a permutation as the product of a minimal number of transpositions and its connection with the theory of graphs”, Publ. Math. Inst. Hungar. Acad. Sci., 4 (1959), 63–70 | MR
[3] M. Dołęga, V. Féray, “On Kerov polynomials for Jack characters”, DMTCS Proceedings, FPSAC 2013, 2013, AS:539–550
[4] A. Goupil, G. Schaeffer, “Factoring $n$-cycles and counting maps of given genus”, European Journal of Combinatorics, 19:16 (1998), 819–834 | DOI | MR | Zbl
[5] J. Irving, “On the number of factorizations of a full cycle”, J. Comb. Theory Ser. A, 113:7 (2006), 1549–1554 | DOI | MR | Zbl
[6] D. M. Jackson, “Some combinatorial problems associated with products of conjugacy classes of the symmetric group”, J. Comb. Theory Ser. A, 49:2 (1988), 363–369 | DOI | MR | Zbl
[7] I. Macdonald, Symmetric functions and Hall polynomials, Second Edition, Oxford University Press, 1999 | MR
[8] A. H. Morales, E. Vassilieva, “Bijective enumeration of bicolored maps of given vertex degree distribution”, DMTCS Proceedings, FPSAC 2009, 2009, AK:661–672 | MR
[9] A. H. Morales, E. Vassilieva, “Bijective evaluation of the connection coefficients of the double coset algebra”, DMTCS Proceedings, FPSAC 2011, 2011, AO:681–692 | MR
[10] G. Schaeffer, E. Vassilieva, “A bijective proof of Jackson's formula for the number of factorizations of a cycle”, J. Comb. Theory Ser. A, 115:6 (2008), 903–924 | DOI | MR | Zbl
[11] A. B. Shukla, A short proof of Cayley's tree formula, 2009, arXiv: 0908.2324v2
[12] R. P. Stanley, “Some combinatorial properties of Jack symmetric functions”, Advances in Mathematics, 77 (1989), 76–115 | DOI | MR | Zbl
[13] E. A. Vassilieva, “Explicit generating series for connection coefficients”, DMTCS Proceedings, FPSAC 2012, 2012, AR:123–134 | MR
[14] E. A. Vassilieva, “Long cycle factorizations: bijective computation in the general case”, DMTCS Proceedings, FPSAC 2013, 2013, AS:1077–1088