Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2014_15_1_a16, author = {A. V. Shutov}, title = {Farey fractions and permutations generated by fractional parts $\{i\alpha\}$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {195--203}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a16/} }
A. V. Shutov. Farey fractions and permutations generated by fractional parts $\{i\alpha\}$. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 195-203. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a16/
[1] Bukhshtab A. A., Teoriya chisel, Prosveschenie, M., 1966 | Zbl
[2] Zhuravlev V. G., “Dvukhtsvetnye povoroty edinichnoi okruzhnosti”, Izv. RAN. Ser. Mat., 73:1 (2009), 79–120 | DOI | MR | Zbl
[3] Zhuravlev V. G., “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. Mat., 71:2 (2007), 89–122 | DOI | MR | Zbl
[4] Manuilov N. N., Shutov A. V., “Globalnyi poryadok razbieniya okruzhnosti”, Molodezh. Obrazovanie. Ekonomika, Sbornik nauchnykh statei uchastnikov 5-oi Vserossiiskoi nauchno-prakticheskoi konferentsii molodykh uchenykh, aspirantov i studentov (4 maya 2004), Izd. Remder, Yaroslavl, 2004, 314–320
[5] Martynov A. V., “Otnoshenie poryadka diofantovogo tipa”, Chebyshevskii sbornik, 2 (2001), 61–72 | MR | Zbl
[6] Shutov A. V., “Neodnorodnye diofantovy priblizheniya i raspredelenie drobnykh dolei”, Fundamentalnaya i prikladnaya matematika, 16:6 (2010), 189–202
[7] Shutov A. V., “O raspredelenii drobnykh dolei”, Chebyshevskii sbornik, 5:3 (2004), 112–121 | MR | Zbl
[8] Shutov A. V., “O raspredelenii drobnykh dolei, II”, Mezhvuz. sb. nauch. tr., Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, 3, Iz-vo Saratovskogo Universiteta, Saratov, 2005, 146–158
[9] Shutov A. V., “Posledovatelnosti shturma: grafy Rozi i forsing”, Chebyshevskii sbornik, 8:2 (2007), 128–139 | MR | Zbl
[10] Shutov A. V., “Proizvodnye povorotov okruzhnosti i podobie orbit”, Zapiski nauchnykh seminarov POMI, 314 (2004), 272–284 | MR | Zbl
[11] Shutov A. V., “Sistemy schisleniya i mnozhestva ogranichennogo ostatka”, Chebyshevskii sbornik, 7:3 (2006), 110–128 | MR | Zbl
[12] Alessandri P., Berthe V., “Three distance theorems and combinatorics on words”, L'Enseignement Mathematique, 44 (1998), 103–132 | MR | Zbl
[13] Baxa C., “Comparing the distribution of $(n\alpha)$-sequences”, Acta Arithmetica, 94 (2002), 345–363 | MR
[14] Behnke H., “Zur Theorie der diophantischen Approximationen, I”, Abh. Math. Sem. Hamburg, 3 (1924), 261–318 | DOI | MR | Zbl
[15] Boyd D. W., Steele J. M., “Monotone subsequences in the sequence of fractional parts of multiplies of ann irrational”, J. Reine Angew. Math., 1979, no. 306, 49–59 | MR | Zbl
[16] O'Bryant K., “Sturmian Words and the Permutation that Orders Fractional Parts”, Journal of Algebraic combinatoric, 19:1 (2004), 91–115 | DOI | MR
[17] Farey J., “On a Curious Property of Vulgar Fractions”, London, Edinburgh and Dublin Phil. Mag., 47 (1816), 385
[18] Hardy G. H., Wright E. M., An introduction to the theory of numbers, Clarendon press, Oxford, 1975
[19] Hecke E., “Eber Analytische Funktionen und die Verteilung van Zahlen mod Eins”, Math. Sem. Hamburg Univ., 5 (1921), 54–76
[20] Kesten H., “On a conjecture of Erdös and Szüsz related to uniform distribution $\mod 1$”, Acta Arithmetica, 12 (1966), 193–212 | MR | Zbl
[21] Van Ravenstein T., “The three gap theorem (Steinhaus conjecture)”, Journal of the Australian Mathematical Society, 45:3 (1988), 360–370 | DOI | MR | Zbl
[22] Slater N. B., “Gaps and steps for the sequence $n\theta\bmod 1$”, Proc. Cambridge Phil. Soc., 63 (1967), 1115–1123 | DOI | MR | Zbl
[23] Swierczkowski S., “On successive settings of an arc on the circumference of a circle”, Fundam. Math., 46 (1958), 187–189 | MR
[24] Shutov A. V., “New estimates in the Hecke–Kesten problem”, Anal. Probab. Methods Number Theory, ed. E. Manstavičisus et al., TEV, Vilnius, 2007 | MR | Zbl
[25] Sos V. T., “A lánktörtek egy geometriai interpretációja és alkalmazásai”, Mat. Lapok., 8 (1957), 248–263 | MR
[26] Walfisz A., Weyl'sche Exponentialsummen in der neueren Zahlentheorie, Ch. 5, Deutscher Verlag der Wissenschaften, Berlin, 1963 | MR | Zbl
[27] Weyl H., “Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene”, Rendicontidel Circolo Mathematico di Palermo, 30 (1910), 377–407 | DOI | Zbl