Тне asymptotic of the Bell‘s numbers sequence
Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 186-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bell`s numbers $B(s)$ defines the amount partitions of $s$-element set and with growth $s$ they have an exponentiale growth. That`s why the asymptotic`s investigation $s >>1$ of sequence $\{B(s)\}$ of Bell`s numbers $B(s)$ becomes actual, for example, if do the following combinatorial sum. Let`s take a discrete space of elementary event containing $s$ points with given law of probability distribution $p_1;…;p_s$, $p_1+\ldots+p_s=1$. On configurations of partitions one should define such a partition at which minimum of informational Shanon`s entropy is gained. One can face with this problem when the optimization of block-control of difficult cybernetic systems is present. In this work some asymptotic properties of sequence of Bell`s numbers are considered. The main result of work represents the correlation: $\lim\limits_{s\to\infty}\dfrac{B(s)B(s+2)}{B^2(s+1)}=1$, where $B(s)$; $B(s+1)$; $B(s+2)$ — Bell`s numbers with numerals $s$; $s+1$; $s+2$. This result shows that asymptotical sequence of Bell`s numbers behaved themselves geometrical progression with denominator $x*= B(s+1) / B(s)$. In the frames of additive presentation of Bell`s numbers with the help of Stirling`s numders the asymptotics is set up $B(s) ~ St(s; n*) ~(n^*)^s/(n^*)! $, where $n*= [x*]$. Thus, a new class of sequences is up, the topology of which is characterized by the asymptotics in the form of the geometrical progression. Thus, a new class of sequences is established, the topology of wich is characterized by asymptotics in the form of geometrical progression.
Keywords: Bell's numbers, course of value function, saddle-point method, Stirlig`s numbers, asymptotic sequence.
@article{CHEB_2014_15_1_a15,
     author = {V. E. Firstov},
     title = {{\CYRT}{\cyrn}{\cyre} asymptotic of the {Bell{\textquoteleft}s} numbers sequence},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {186--194},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a15/}
}
TY  - JOUR
AU  - V. E. Firstov
TI  - Тне asymptotic of the Bell‘s numbers sequence
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 186
EP  - 194
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a15/
LA  - ru
ID  - CHEB_2014_15_1_a15
ER  - 
%0 Journal Article
%A V. E. Firstov
%T Тне asymptotic of the Bell‘s numbers sequence
%J Čebyševskij sbornik
%D 2014
%P 186-194
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a15/
%G ru
%F CHEB_2014_15_1_a15
V. E. Firstov. Тне asymptotic of the Bell‘s numbers sequence. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 186-194. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a15/

[1] Andrews G. E., Encyclopedia of Mathematics and his Applications, v. 2, The Theory of Partitions, ed. G.-C. Rota, Addison-Wesley Publishing Company, London–Amsterdam–Don Mills–Sydney–Tokio, 1976, 255 pp. | MR | MR | Zbl

[2] Riordan J., An Introduction to Combinatorial Analysis, Wiley, Inc., New York; Chapman, Ltd., London, 1958, 287 pp. | MR | Zbl

[3] Janke E., Emde F., Lösch F., Taffeln höherer Funktionen, B. G. Teubner Verlagsgesselschaft, Stuttgart, 1960, 342 pp.

[4] D`Bruijn N. G., Asymptotic Methods in Analysis, North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen, 1958, 247 pp. | MR | Zbl

[5] Fikhtengol'ts G. M., A Course of Differential and Integral Calculus, v. 1, Nauka, M., 1966, 607 pp. (in Russian)