Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2014_15_1_a14, author = {T. V. Skoraya and Yu. Yu. Frolova}, title = {About variety $_{3}\mathbf{N}$ of {Leibniz} algebras and its subvarieties}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {155--185}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a14/} }
TY - JOUR AU - T. V. Skoraya AU - Yu. Yu. Frolova TI - About variety $_{3}\mathbf{N}$ of Leibniz algebras and its subvarieties JO - Čebyševskij sbornik PY - 2014 SP - 155 EP - 185 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a14/ LA - ru ID - CHEB_2014_15_1_a14 ER -
T. V. Skoraya; Yu. Yu. Frolova. About variety $_{3}\mathbf{N}$ of Leibniz algebras and its subvarieties. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 155-185. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a14/
[1] Bahturin Yu. A., Identities in Lie algebras, Nauka, M., 1985 | MR | Zbl
[2] Blokh A. M., “A generalization of the concept of a Lie algebra”, Sov. Math. Dokl., 1965, no. 3, 471–473
[3] Malcev A. I., “On algebras defined by identieties”, Mat. Sb., 26:1 (1950), 19–33
[4] Abanina L. E., Mishchenko S. P., “The variety of Leibniz algebras defined by the identity $x(y(zt))\equiv 0$”, Sedrica Math. J., 2003, no. 3, 291–300 | MR | Zbl
[5] Abanina L. E., Ratssev S. M., “A Leibniz variety connected with standart identities”, Vestnik of Samara state University, natural scientific series, 2005, no. 6, 36–50 | MR | Zbl
[6] Abanina L. E., Mishchenko S. P., “Some varieties of Leibniz algebras”, Mathematical methods and applications, Proceedings of the ninth mathematical conference of MSSU (2002), 95–99
[7] Mishchenko S. P., Shishkina T. V., “On almost polynomial growth varieties of Leibniz algebras with the identity $x(y(zt))\equiv 0$”, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2010, no. 3, 18–23
[8] Higgins P. J., “Lie rings satisfying the Engel condition”, Proc. Cambr. Philos. Soc., 50:1 (1954), 8–15 | DOI | MR | Zbl
[9] Mishchenko S. P., “Colored Young diagrams”, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1993, no. 1, 90–91
[10] Mishchenko S. P., Cherevatenko O. I., “Necessary and succient conditions for a variety of Leibniz algebras to have polynomial growth”, Fundam. Prikl. Mat., 12:8 (2006), 207–215
[11] Frolova Yu. Yu., Burnside type problems for Leibniz algebras, dis. ... candidate of physical and mathematical sciences, Ulyanovsk, 2011, 85 pp.
[12] Mishchenko S. P., Petrogradsky V. M., Regev A., “Poisson PI algebras”, Transactions of the American Mathematical Society, 359:10 (2007), 4669–4694 | DOI | MR | Zbl
[13] Zaicev M. V., Mishchenko S. P., “A new extremal property of the variety $\mathbf{AN}_{2}$ of Lie algebras”, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1999, no. 5, 18–23
[14] Shishkina T. V., “About integrality of exponent subvarieties of variety $_{3}\mathbf{N}$”, Scientific notes of the Ulyanovsk state university. Series of the mathematic and information technologies, 2011, 18–23
[15] Giambruno A., Mishchenko S., Zaicev M., “Codimensions of Algebras and Growth Functions”, Advances of mathematics, 217 (2008), 1027–1052 | DOI | MR | Zbl
[16] Giambruno A., Zaicev M. V., “Exponential codimension growth of PI algebras: an exact estimate”, Adv. Math., 142 (1999), 221–243 | DOI | MR | Zbl
[17] Giambruno A., Zaicev M. V., “On codimension growth of finitely generated associative algebras”, Adv. Math., 140 (1998), 145–155 | DOI | MR | Zbl
[18] Mishchenko S. P., Zaicev M. V., “An example of a variety of Lie algebras with a fractional exponent”, J. Math. Sci., 93:6 (1993), 977–982 | MR