Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2014_15_1_a13, author = {V. O. Osipyan and A. V. Mirzayan and Y. A. Karpenko and A. S. Zhuk and A. H. Arutyunyan}, title = {Mathematical model of information security systems based on {Diophantine} sets}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {146--154}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a13/} }
TY - JOUR AU - V. O. Osipyan AU - A. V. Mirzayan AU - Y. A. Karpenko AU - A. S. Zhuk AU - A. H. Arutyunyan TI - Mathematical model of information security systems based on Diophantine sets JO - Čebyševskij sbornik PY - 2014 SP - 146 EP - 154 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a13/ LA - ru ID - CHEB_2014_15_1_a13 ER -
%0 Journal Article %A V. O. Osipyan %A A. V. Mirzayan %A Y. A. Karpenko %A A. S. Zhuk %A A. H. Arutyunyan %T Mathematical model of information security systems based on Diophantine sets %J Čebyševskij sbornik %D 2014 %P 146-154 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a13/ %G ru %F CHEB_2014_15_1_a13
V. O. Osipyan; A. V. Mirzayan; Y. A. Karpenko; A. S. Zhuk; A. H. Arutyunyan. Mathematical model of information security systems based on Diophantine sets. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 146-154. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a13/
[1] Shannon C., “Communication theory of secrecy systems”, Bell System Techn. J., 28:4 (1949), 656–715 | DOI | MR | Zbl
[2] Diffie W., Hellman M., “New directions in cryptography”, IEEE Transactions on Information Theory, 22 (1976), 644–654 | DOI | MR | Zbl
[3] Rivest R. L., Chor B., “A knapsack-type public key cryptosystem based on arithmetic in finite fields”, IEEE Transactions on Information Theory, 34:5 (1988), 901–909 | DOI | MR
[4] Shamir A., “A polynomial-time algorithm for breaking the basic Merkle–Hellman cryptosystem”, Information Theory, IEEE Transactions, 30:5 (1984), 699-704 | DOI | MR | Zbl
[5] Lenstra H. W. Jr., “Integer Programming with a Fixed Number of Variables”, Mathematics of Operations Research, 8:4 (1983), 538–548 | DOI | MR | Zbl
[6] Vaudenay S., “Cryptanalysis of the Chor–Rivest cryptosystem”, CRYPTO, 1998, 243–256 | MR | Zbl
[7] Salomaa A., Kriptografiya s otkrytym klyuchom, IL, M., 1995, 380 pp.
[8] A. P. Alferov, A. Yu. Zubov, A. S. Kuzmin, A. V. Cheremushkin, Osnovy kriptografii, uchebnoe posobie dlya studentov VUZ, Gelios ARV, M., 2002, 480 pp.
[9] V. O. Osipyan, A. S. Arutyunyan, S. G. Spirina, “Modelirovanie rantsevykh kriptosistem, soderzhaschikh diofantovuyu trudnost”, Chebyshevskii sbornik, XI:1 (2010), 209–217 | MR
[10] Osipyan V. O., Modelirovanie sistem zaschity informatsii soderzhaschikh diofantovy trudnosti. Razrabotka metodov reshenii mnogostepennykh sistem diofantovykh uravnenii. Razrabotka nestandartnykh ryukzachnykh kriptosistem, LAP, 2012, 344 pp.
[11] Gloden A., Mehrgradide Gleichungen, Groningen, 1944
[12] Dickson L. E., History of the Theory of Numbers, v. 2, Diophantine Analysis, N.-Y, 1971
[13] Matiyasevich Yu. V., “Diofantovy mnozhestva”, Uspekhi mat. nauk, 27:5 (1972), 185–222 | MR | Zbl
[14] Osipyan V. O., “Buiding of alphabetic data protection cryptosystems on the base of equal power knapsacks with Diophantine problems”, ACM, 2012, 124–129
[15] V. O. Osipyan, K. V. Osipyan, Kriptografiya v uprazhneniyakh i zadachakh, Gelios ARV, M., 2004, 144 pp.
[16] Osipyan V. O., “Different models of information protection system, based on the functional knapsack”, ACM, 2011, 215–218
[17] V. O. Osipyan, Yu. A. Karpenko, A. S. Zhuk, A. Kh. Arutyunyan, “Diofantovy trudnosti atak na nestandartnye ryukzachnye sistemy zaschity informatsii”, Izvestiya YuFU. Tekhnicheskie nauki, 2013, no. 12, 209–215