Mathematical model of information security systems based on Diophantine sets
Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 146-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

Development of the asymmetric cryptography started with the appearance of the first knapsack information protection system, when, in 1978, Ralph Merkel and Martin Hellman proposed to use different keys for forward and reverse mapping data for encryption. Now this model, like many based on are considered to be insecure. As a result the authority of knapsack systems was low. However, some of these systems are still considered persistent, for example, the model proposed in 1988 by Ben Shore and Ronald Rivest. In the article stated and solved the problem of argumentation of cryptographic strength of the non-standard knapsack information security systems. Justified diophantine difficulties that arise in the study of vulnerabilities of the investigated information security systems. Revealed the qualitative features of non-standard knapsack systems that increase their resistance to known attacks. In this paper, we propose a mathematical model of polyalphabetic cryptosystem, in which the algorithm of inverse transformation of closed text is algorithmically unsolvable problem for the analyst. It's permeated with the idea K. Shennon, who believed that cryptosystems, containing Diophantine problems, have the greatest variation in the selection of key.
Keywords: knapsack information security system; resistance of algorithm; diophantine difficulties; knapsack algorithm; knapsack vector; plain text; key; ciphertext.
@article{CHEB_2014_15_1_a13,
     author = {V. O. Osipyan and A. V. Mirzayan and Y. A. Karpenko and A. S. Zhuk and A. H. Arutyunyan},
     title = {Mathematical model of information security systems based on {Diophantine} sets},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {146--154},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a13/}
}
TY  - JOUR
AU  - V. O. Osipyan
AU  - A. V. Mirzayan
AU  - Y. A. Karpenko
AU  - A. S. Zhuk
AU  - A. H. Arutyunyan
TI  - Mathematical model of information security systems based on Diophantine sets
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 146
EP  - 154
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a13/
LA  - ru
ID  - CHEB_2014_15_1_a13
ER  - 
%0 Journal Article
%A V. O. Osipyan
%A A. V. Mirzayan
%A Y. A. Karpenko
%A A. S. Zhuk
%A A. H. Arutyunyan
%T Mathematical model of information security systems based on Diophantine sets
%J Čebyševskij sbornik
%D 2014
%P 146-154
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a13/
%G ru
%F CHEB_2014_15_1_a13
V. O. Osipyan; A. V. Mirzayan; Y. A. Karpenko; A. S. Zhuk; A. H. Arutyunyan. Mathematical model of information security systems based on Diophantine sets. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 146-154. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a13/

[1] Shannon C., “Communication theory of secrecy systems”, Bell System Techn. J., 28:4 (1949), 656–715 | DOI | MR | Zbl

[2] Diffie W., Hellman M., “New directions in cryptography”, IEEE Transactions on Information Theory, 22 (1976), 644–654 | DOI | MR | Zbl

[3] Rivest R. L., Chor B., “A knapsack-type public key cryptosystem based on arithmetic in finite fields”, IEEE Transactions on Information Theory, 34:5 (1988), 901–909 | DOI | MR

[4] Shamir A., “A polynomial-time algorithm for breaking the basic Merkle–Hellman cryptosystem”, Information Theory, IEEE Transactions, 30:5 (1984), 699-704 | DOI | MR | Zbl

[5] Lenstra H. W. Jr., “Integer Programming with a Fixed Number of Variables”, Mathematics of Operations Research, 8:4 (1983), 538–548 | DOI | MR | Zbl

[6] Vaudenay S., “Cryptanalysis of the Chor–Rivest cryptosystem”, CRYPTO, 1998, 243–256 | MR | Zbl

[7] Salomaa A., Kriptografiya s otkrytym klyuchom, IL, M., 1995, 380 pp.

[8] A. P. Alferov, A. Yu. Zubov, A. S. Kuzmin, A. V. Cheremushkin, Osnovy kriptografii, uchebnoe posobie dlya studentov VUZ, Gelios ARV, M., 2002, 480 pp.

[9] V. O. Osipyan, A. S. Arutyunyan, S. G. Spirina, “Modelirovanie rantsevykh kriptosistem, soderzhaschikh diofantovuyu trudnost”, Chebyshevskii sbornik, XI:1 (2010), 209–217 | MR

[10] Osipyan V. O., Modelirovanie sistem zaschity informatsii soderzhaschikh diofantovy trudnosti. Razrabotka metodov reshenii mnogostepennykh sistem diofantovykh uravnenii. Razrabotka nestandartnykh ryukzachnykh kriptosistem, LAP, 2012, 344 pp.

[11] Gloden A., Mehrgradide Gleichungen, Groningen, 1944

[12] Dickson L. E., History of the Theory of Numbers, v. 2, Diophantine Analysis, N.-Y, 1971

[13] Matiyasevich Yu. V., “Diofantovy mnozhestva”, Uspekhi mat. nauk, 27:5 (1972), 185–222 | MR | Zbl

[14] Osipyan V. O., “Buiding of alphabetic data protection cryptosystems on the base of equal power knapsacks with Diophantine problems”, ACM, 2012, 124–129

[15] V. O. Osipyan, K. V. Osipyan, Kriptografiya v uprazhneniyakh i zadachakh, Gelios ARV, M., 2004, 144 pp.

[16] Osipyan V. O., “Different models of information protection system, based on the functional knapsack”, ACM, 2011, 215–218

[17] V. O. Osipyan, Yu. A. Karpenko, A. S. Zhuk, A. Kh. Arutyunyan, “Diofantovy trudnosti atak na nestandartnye ryukzachnye sistemy zaschity informatsii”, Izvestiya YuFU. Tekhnicheskie nauki, 2013, no. 12, 209–215