On some properties palindromes of automorphisms of a free group
Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 141-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F_n$, $n\ge2$ denote the free group generated by $n$ letters $x_1,\ldots,$ $\ldots,x_n$ and $Aut(F_n)$ be the automorphism group of $F_n$. Certain subgroup of the group $Aut(F_n)$ are considered. First of all examine the palindromic automorphism group $\text{П}A(F_n)$. This group first defined Collins in [1], which is related to congruence subgroups of $SL(n,\mathbb Z)$, and symmetric automorphism group of the free group. It is calculate the center of the palindromic automorphism group. For this used combinatorics on words of the group $F_n$. Second theme of this paper connect with faithfulness of a linear representation of the group elementary palindromic automorphisms $E\text{П}A(F_n)$. It is show that some concrete representation are not linear. For this use the subgroup $IA(F_n)$ of group $Aut(F_n)$ [15].
Keywords: free group, palindromes automorphism.
@article{CHEB_2014_15_1_a12,
     author = {A. I. Nekritsuhin},
     title = {On some properties palindromes of automorphisms of a free group},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {141--145},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a12/}
}
TY  - JOUR
AU  - A. I. Nekritsuhin
TI  - On some properties palindromes of automorphisms of a free group
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 141
EP  - 145
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a12/
LA  - ru
ID  - CHEB_2014_15_1_a12
ER  - 
%0 Journal Article
%A A. I. Nekritsuhin
%T On some properties palindromes of automorphisms of a free group
%J Čebyševskij sbornik
%D 2014
%P 141-145
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a12/
%G ru
%F CHEB_2014_15_1_a12
A. I. Nekritsuhin. On some properties palindromes of automorphisms of a free group. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 141-145. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a12/

[1] Collins D. J., “Palindromic automorphisms of free groups”, Combinatorial and geometric group theory (Edinburgh, 1993), London Math. Soc. Lecture Note Ser., 204, Cambridge University Press Cambridge, 1995, 63–72 | MR | Zbl

[2] Nekritsukhin A. I., “Palindromicheskie avtomorfizmy svobodnoi gruppy”, Chebyshevskii sbornik, 9:1 (2008), 148–152 | MR | Zbl

[3] Nekritsukhin A. I., “Nilpotentnaya approksimiruemost gruppy palindromicheskikh avtomorfizmov svobodnoi gruppy”, Chebyshevskii sbornik, 11:1 (2010), 199–201 | MR | Zbl

[4] Cohen F. R., Metaftsis V., Prassidis S., On the linearity of the holomorph group of a free group on two generators, 3 May 2009, arXiv: 0905.0295v1[math.GR]

[5] Glover H. H., Jensen C. A., Geometry for palindromic automorphism groups of free groups, 18 Dec 2001, arXiv: 0112190V1[math.GR] | MR

[6] Helling H., “A note on the automorphism group of the rank two free group”, J. Algebra, 223:2 (2000), 610–614 | DOI | MR | Zbl

[7] Piggott A., “Palindromic primitives and palindromic bases in the free group of rank two”, J. Algebra, 3043:1 (2006), 359–366 | DOI | MR

[8] Gilman J., Keen L., Cutting sequences and palindromes, 3 Mar. 2008, arXiv: 0803.0234[math.GR] | MR

[9] Gilman J., Keen L., Enumerating palindromes in rank two free groups, 19 Feb. 2008, arXiv: 0802.2731[math.GR] | MR

[10] Kassel C., Reutenauer C., A palindromization map for the free group, 29 Feb. 2008, arXiv: 0802.4359[math.GR] | MR

[11] Bardakov V., Mikhailov R., On certain questions of the free group automorphisms theory, 16 Jan. 2007, arXiv: 0701441[math.GR] | MR

[12] Bardakov V., Shpilrain V., Tolstykh V., “On palindromic and primitives widths of a free group”, J. Algebra, 285:2 (2005), 574–585 | DOI | MR | Zbl

[13] Bardakov V. G., “Lineinye predstavleniya grupp sopryagayuschikh avtomorfizmov i grupp kos nekotorykh mnogoobrazii”, Sib. mat. zhurn., 46:1 (2005), 17–31 | MR | Zbl

[14] Formanek E., Procesi C., “The automorphism groups of a free group is not linear”, J. Algebra, 149:2 (1992), 494–499 | DOI | MR | Zbl

[15] Lyndon R., Schupp P., Combinatorial group theory, Springer-Verlag, 1977 | MR | Zbl