On some properties palindromes of automorphisms of a free group
Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 141-145

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F_n$, $n\ge2$ denote the free group generated by $n$ letters $x_1,\ldots,$ $\ldots,x_n$ and $Aut(F_n)$ be the automorphism group of $F_n$. Certain subgroup of the group $Aut(F_n)$ are considered. First of all examine the palindromic automorphism group $\text{П}A(F_n)$. This group first defined Collins in [1], which is related to congruence subgroups of $SL(n,\mathbb Z)$, and symmetric automorphism group of the free group. It is calculate the center of the palindromic automorphism group. For this used combinatorics on words of the group $F_n$. Second theme of this paper connect with faithfulness of a linear representation of the group elementary palindromic automorphisms $E\text{П}A(F_n)$. It is show that some concrete representation are not linear. For this use the subgroup $IA(F_n)$ of group $Aut(F_n)$ [15].
Keywords: free group, palindromes automorphism.
@article{CHEB_2014_15_1_a12,
     author = {A. I. Nekritsuhin},
     title = {On some properties palindromes of automorphisms of a free group},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {141--145},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a12/}
}
TY  - JOUR
AU  - A. I. Nekritsuhin
TI  - On some properties palindromes of automorphisms of a free group
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 141
EP  - 145
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a12/
LA  - ru
ID  - CHEB_2014_15_1_a12
ER  - 
%0 Journal Article
%A A. I. Nekritsuhin
%T On some properties palindromes of automorphisms of a free group
%J Čebyševskij sbornik
%D 2014
%P 141-145
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a12/
%G ru
%F CHEB_2014_15_1_a12
A. I. Nekritsuhin. On some properties palindromes of automorphisms of a free group. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 141-145. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a12/