Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2014_15_1_a10, author = {A. Laurin\v{c}ikas and M. Stoncelis and D. \v{S}iau\v{c}i\={u}nas}, title = {On the zeros of some functions related to periodic zeta-functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {121--130}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a10/} }
TY - JOUR AU - A. Laurinčikas AU - M. Stoncelis AU - D. Šiaučiūnas TI - On the zeros of some functions related to periodic zeta-functions JO - Čebyševskij sbornik PY - 2014 SP - 121 EP - 130 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a10/ LA - en ID - CHEB_2014_15_1_a10 ER -
A. Laurinčikas; M. Stoncelis; D. Šiaučiūnas. On the zeros of some functions related to periodic zeta-functions. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 121-130. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a10/
[1] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981
[2] Garunkštis R., Tamošiūnas R., “Zeros of the periodic Hurwitz zeta-function”, Šiauliai Math. Semin., 8:16 (2013), 49–62 | MR
[3] Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979 | MR
[4] Javtokas A., Laurinčikas A., “Universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 17:10 (2006), 711–722 | DOI | MR | Zbl
[5] Kaczorowski J., “Some remarks on the universality of periodic $L$-functions”, New Directions in Value-Distribution Theory of Zeta and $L$-functions, eds. R. Steuding, J. Steuding, Shaker Verlaag, Aachen, 2009, 113–120 | MR | Zbl
[6] Kačinskaitė R., Laurinčikas A., “The joint distribution of periodic zeta-functions”, Studia Sci. Math. Hungarica, 48:2 (2011), 257–279 | MR
[7] Korsakienė D., Pocevičienė V., Šiaučiūnas D., “On universality of periodic zeta-functions”, Šiauliai Math. Semin., 8:16 (2013), 131–141
[8] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR
[9] Laurinčikas A., “On joint universality of Dirichlet $L$-functions”, Chebyshevskii Sb., 12:1 (2011), 129–139 | MR
[10] Laurinčikas A., Garunkštis R., The Lerch zeta-function, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl
[11] Laurinčikas A., Macaitienė R., Mokhov D., Šiaučiūnas D., “On universality of certain zeta-functions”, Izv. Sarat. u-ta. Nov. ser. Ser. Matem. Mekhan. Inform., 13:4 (2013), 67–72
[12] Laurinčikas A., Matsumoto K., “The universality of zeta-functions attached to certain cusp forms”, Acta Arith., 98:4 (2001), 345–359 | DOI | MR | Zbl
[13] Laurinčikas A., Matsumoto K., Steuding J., “The universality of $L$-functions associated with newforms”, Izv. Math., 67:1 (2003), 77–90 | DOI | MR | Zbl
[14] Laurinčikas A., Šiaučiūnas D., “Remarks on the universality of periodic zeta-function”, Math. Notes, 80:3–4 (2006), 711–722 | MR
[15] Laurinčikas A., Šiaučiūnas D., “On zeros of periodic zeta-functions”, Ukrainian Math. J., 65:6 (2013), 953–958 | DOI | MR | Zbl
[16] Nagoshi H., Steuding J., “Universality for $L$-functions in the Selberg class”, Lith. Math. J., 50:3 (2010), 293–311 | DOI | MR | Zbl
[17] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, Nauka, M., 1967 | MR
[18] Steuding J., “On Dirichlet series with periodic coefficients”, Ramanujan J., 6 (2002), 295–306 | DOI | MR | Zbl
[19] Steuding J., “Universality in the Selberg class”, Special Activity in Analytic Number Theory and Diophantine Equations, Proc. Workshop (Max Plank-Institute, Bonn, 2003), Bonner Math. Schiften., 360, eds. D. R. Heath-Brown, B. Moroz, Bonn, 2003 | MR | Zbl
[20] Steuding J., Value-Distribution of $L$-functions, Lecture Notes in Math., 1877, Springer Verlag, Berlin–Heidelberg, 2007 | MR | Zbl
[21] Voronin S. M., “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. Matematika, 39:3 (1975), 475–486 | MR | Zbl
[22] Voronin S. M., “The functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 | MR | Zbl