On the zeros of some functions related to periodic zeta-functions
Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 121-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we obtain that a linear combination of the periodic and periodic Hurwitz zeta-functions, and more general combinations of these functions have infinitely many zeros lying in the right-hand side of the critical strip.
Keywords: periodic zeta-function, periodic Hurwitz zeta-function, universality, zeros of analytic function.
@article{CHEB_2014_15_1_a10,
     author = {A. Laurin\v{c}ikas and M. Stoncelis and D. \v{S}iau\v{c}i\={u}nas},
     title = {On the zeros of some functions related to periodic zeta-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {121--130},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a10/}
}
TY  - JOUR
AU  - A. Laurinčikas
AU  - M. Stoncelis
AU  - D. Šiaučiūnas
TI  - On the zeros of some functions related to periodic zeta-functions
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 121
EP  - 130
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a10/
LA  - en
ID  - CHEB_2014_15_1_a10
ER  - 
%0 Journal Article
%A A. Laurinčikas
%A M. Stoncelis
%A D. Šiaučiūnas
%T On the zeros of some functions related to periodic zeta-functions
%J Čebyševskij sbornik
%D 2014
%P 121-130
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a10/
%G en
%F CHEB_2014_15_1_a10
A. Laurinčikas; M. Stoncelis; D. Šiaučiūnas. On the zeros of some functions related to periodic zeta-functions. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 121-130. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a10/

[1] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981

[2] Garunkštis R., Tamošiūnas R., “Zeros of the periodic Hurwitz zeta-function”, Šiauliai Math. Semin., 8:16 (2013), 49–62 | MR

[3] Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979 | MR

[4] Javtokas A., Laurinčikas A., “Universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 17:10 (2006), 711–722 | DOI | MR | Zbl

[5] Kaczorowski J., “Some remarks on the universality of periodic $L$-functions”, New Directions in Value-Distribution Theory of Zeta and $L$-functions, eds. R. Steuding, J. Steuding, Shaker Verlaag, Aachen, 2009, 113–120 | MR | Zbl

[6] Kačinskaitė R., Laurinčikas A., “The joint distribution of periodic zeta-functions”, Studia Sci. Math. Hungarica, 48:2 (2011), 257–279 | MR

[7] Korsakienė D., Pocevičienė V., Šiaučiūnas D., “On universality of periodic zeta-functions”, Šiauliai Math. Semin., 8:16 (2013), 131–141

[8] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR

[9] Laurinčikas A., “On joint universality of Dirichlet $L$-functions”, Chebyshevskii Sb., 12:1 (2011), 129–139 | MR

[10] Laurinčikas A., Garunkštis R., The Lerch zeta-function, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl

[11] Laurinčikas A., Macaitienė R., Mokhov D., Šiaučiūnas D., “On universality of certain zeta-functions”, Izv. Sarat. u-ta. Nov. ser. Ser. Matem. Mekhan. Inform., 13:4 (2013), 67–72

[12] Laurinčikas A., Matsumoto K., “The universality of zeta-functions attached to certain cusp forms”, Acta Arith., 98:4 (2001), 345–359 | DOI | MR | Zbl

[13] Laurinčikas A., Matsumoto K., Steuding J., “The universality of $L$-functions associated with newforms”, Izv. Math., 67:1 (2003), 77–90 | DOI | MR | Zbl

[14] Laurinčikas A., Šiaučiūnas D., “Remarks on the universality of periodic zeta-function”, Math. Notes, 80:3–4 (2006), 711–722 | MR

[15] Laurinčikas A., Šiaučiūnas D., “On zeros of periodic zeta-functions”, Ukrainian Math. J., 65:6 (2013), 953–958 | DOI | MR | Zbl

[16] Nagoshi H., Steuding J., “Universality for $L$-functions in the Selberg class”, Lith. Math. J., 50:3 (2010), 293–311 | DOI | MR | Zbl

[17] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, Nauka, M., 1967 | MR

[18] Steuding J., “On Dirichlet series with periodic coefficients”, Ramanujan J., 6 (2002), 295–306 | DOI | MR | Zbl

[19] Steuding J., “Universality in the Selberg class”, Special Activity in Analytic Number Theory and Diophantine Equations, Proc. Workshop (Max Plank-Institute, Bonn, 2003), Bonner Math. Schiften., 360, eds. D. R. Heath-Brown, B. Moroz, Bonn, 2003 | MR | Zbl

[20] Steuding J., Value-Distribution of $L$-functions, Lecture Notes in Math., 1877, Springer Verlag, Berlin–Heidelberg, 2007 | MR | Zbl

[21] Voronin S. M., “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. Matematika, 39:3 (1975), 475–486 | MR | Zbl

[22] Voronin S. M., “The functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 | MR | Zbl