Some residual properties of soluble groups of finite rank
Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 7-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalization of one classical Smel'kin's theorem for polycyclic groups is obtained. A. L. Smelkin proved that if $G$ is a polycyclic group, then it is a virtually residually finite $p$-group for any prime $p$. Recall that a group $G$ is said to be a residually finite $p$-group if for every nonidentity element $a$ of $G$ there exists a homomorphism of the group $G$ onto some finite $p$-group such that the image of the element $a$ differs from 1. A group $G$ will be said to be a virtually residually finite $p$-group if it contains a finite index subgroup which is a residually finite $p$-group. One of the generalizations of the notation of polycyclic group is a notation of soluble finite rank group. Recall that a group $G$ is said to be a group of finite rank if there exists a positive integer $r$ such that every finitely generated subgroup in $G$ is generated by at most $r$ elements. For soluble groups of finite rank the following necessary and sufficient condition to be a residually finite $\pi $-group for some finite set $\pi $ of primes is obtained. If $G$ is a group of finite rank, then the group $G$ is a residually finite $\pi $-group for some finite set $\pi $ of primes if and only if $G$ is a reduced poly-(cyclic, quasicyclic, or rational) group. Recall that a group $G$ is said to be a reduced group if it has no nonidentity radicable subgroups. A group $H$ is said to be a radicable group if every element $h$ in $H$ is an $m$th power of an element of $H$ for every positive number $m$. It is proved that if a soluble group of finite rank is a residually finite $\pi $-group for some finite set $\pi $ of primes, then it is a virtually residually finite nilpotent $\pi $-group. We prove also the following generalization of Smel'kin's theorem. Let $\pi $ be a finite set of primes. If $G$ is a soluble group of finite rank, then the group $G$ is a virtually residually finite $\pi $-group if and only if $G$ is a reduced poly-(cyclic, quasicyclic, or rational) group and $G$ has no $\pi $-radicable elements of infinite order. Recall that an element $g$ in $G$ is said to be $\pi $-radicable if $g$ is an $m$th power of an element of $G$ for every positive $\pi $-number $m$.
Keywords: finite rank group, soluble group, polycyclic group, nilpotent group, residually finite $p$-group.
@article{CHEB_2014_15_1_a1,
     author = {D. N. Azarov},
     title = {Some residual properties of soluble groups of finite rank},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {7--18},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a1/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - Some residual properties of soluble groups of finite rank
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 7
EP  - 18
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a1/
LA  - ru
ID  - CHEB_2014_15_1_a1
ER  - 
%0 Journal Article
%A D. N. Azarov
%T Some residual properties of soluble groups of finite rank
%J Čebyševskij sbornik
%D 2014
%P 7-18
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a1/
%G ru
%F CHEB_2014_15_1_a1
D. N. Azarov. Some residual properties of soluble groups of finite rank. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 7-18. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a1/

[1] Hirsh K. A., “On infinite soluble groups”, J. London Math. Soc., 27 (1952), 81–85 | DOI | MR

[2] Learner A., “Residual properties of polycyclic groups”, J. Math., 8 (1984), 536–542 | MR

[3] Shmelkin A. L., “Politsiklicheskie gruppy”, Sib. mat. zhurn., 9 (1968), 234–235

[4] Lennox J., Robinson D., The theory of infinite soluble groups, Clarendon press, Oxford, 2004, 344 pp. | MR | Zbl

[5] Baumslag G., Solitar D., “Some two-generator one-relator non-Hopfian groups”, Bull. Amer. Math. Soc., 68 (1962), 199–201 | DOI | MR | Zbl

[6] Meskin S., “Nonresidually finite one-relator groups”, Trans. Amer. Math. Soc., 164 (1972), 105–114 | DOI | MR | Zbl

[7] Azarov D. N., “O pochti approksimiruemsti konechnymi p-gruppami grupp Baumslaga–Solitera”, Modelirovanie i analiz inform. sistem, 20:1 (2013), 116–123

[8] Moldavanskii D., On some residuall properties of Baumslag Solitar groups, 2013, arXiv: math.GR/1310.3585v1

[9] Azarov D. N., “O pochti approksimiruemsti konechnymi p–gruppami”, Chebyshevskii sbornik, 11:3 (2010), 11–21 | Zbl

[10] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18:5 (1958), 49–60

[11] Azarov D. N., “O pochti approksimiruemosti konechnymi p-gruppami nekotorykh razreshimykh grupp”, Vestnik Ivan. gos. un-ta, 2012, no. 2, 80–85

[12] Maltsev A. I., “O gruppakh konechnogo ranga”, Mat. sb., 22:2 (1948), 351–352

[13] Lubotzki A., Mann A., “Residually finite groups of finite rank”, Math. Proc. Comb. Phil. Soc., 106:3 (1989), 385–388 | DOI | MR

[14] Azarov D. N., “Ob approksimiruemosti konechnymi p-gruppami grupp konechnogo ranga”, Vestnik Ivan. gos. un-ta, 2001, no. 3, 102–104

[15] Seksenbaev K., “K teorii politsiklicheskikh grupp”, Algebra i logika, 4:3 (1965), 79–83 | MR | Zbl