Approximation by $\Omega$-continued fractions
Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 95-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x\in (0,1)$ be a real number, $x=[0;\varepsilon_1/b_1,\ldots,\varepsilon_1/b_n,\ldots]$ be its expansion in $\Omega$-continued fraction. Let $A_n/B_n$ be its nth convergent and $\Upsilon_n=\Upsilon_n(x)=B^2_n|x -A_n/B_n|$. In this note we prove the analog of the classical theorems by Borel and Hurwitz on the quality of the approximations for $\Omega$-continued fractions: $\min(\Upsilon_{n-1}, \Upsilon_{n},\Upsilon_{n+1})\le 1/\sqrt{5}$. The result is best possible.
Keywords: continued fractions, semi-regular continued fractions, approximation coefficients, Vahlen's theorem, $\Omega$-continued fraction expansion, analogue of Borel's theorem.
@article{CHEB_2013_14_4_a5,
     author = {O. A. Gorkusha},
     title = {Approximation by $\Omega$-continued fractions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {95--100},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a5/}
}
TY  - JOUR
AU  - O. A. Gorkusha
TI  - Approximation by $\Omega$-continued fractions
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 95
EP  - 100
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a5/
LA  - ru
ID  - CHEB_2013_14_4_a5
ER  - 
%0 Journal Article
%A O. A. Gorkusha
%T Approximation by $\Omega$-continued fractions
%J Čebyševskij sbornik
%D 2013
%P 95-100
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a5/
%G ru
%F CHEB_2013_14_4_a5
O. A. Gorkusha. Approximation by $\Omega$-continued fractions. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 95-100. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a5/

[1] Hurwitz A., “Über die angenäherte Darstekkung der Irrationalzahlen durch rationale Brüche”, Math. Ann., 1891, no. 39, 279–284 | DOI | MR | Zbl

[2] Borel E., “Contribution á l'analyse arithmétique do continu”, J. Math. Pures. Appl., 9 (1903), 329–375 | Zbl

[3] Jager H., Kraaikamp C., “On the approximation by continued fractions”, J. Math. Pures. Appl., 92 (1989), 289–307 | MR

[4] Tong J., “Approximation by nearest integer continued fractions”, Math. Scand., 71 (1992), 161–166 | MR | Zbl

[5] Kraaikamp C., Shmidt T., Smeets L., “Tong's spectrum for Rosen continued fractions”, Journal de Théorie des Nombres de Bordeaux, 19 (2007), 641–661 | DOI | MR | Zbl

[6] Hartono Y., Ergotic Properties of Continued Fraction Algorithms, Delft University Press, 2003 | MR

[7] Gorkusha O. A., “O konechnykh tsepnykh drobyakh spetsialnogo vida”, Chebyshevskii sbornik, 9:1(25) (2008), 80–108

[8] Gorkusha O. A., “Nekotorye metricheskie svoistva $\Omega$-drobei”, Chebyshevskii sbornik, 13:2 (2012), 28–58

[9] Dajani K., Kraaikamp C., Ergotic Theory of Numbers, Carus Mathematical Monographs, 29, Mathematical Association of America, Washington, DC, 2002, 190 pp. | MR | Zbl