Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2013_14_4_a5, author = {O. A. Gorkusha}, title = {Approximation by $\Omega$-continued fractions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {95--100}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a5/} }
O. A. Gorkusha. Approximation by $\Omega$-continued fractions. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 95-100. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a5/
[1] Hurwitz A., “Über die angenäherte Darstekkung der Irrationalzahlen durch rationale Brüche”, Math. Ann., 1891, no. 39, 279–284 | DOI | MR | Zbl
[2] Borel E., “Contribution á l'analyse arithmétique do continu”, J. Math. Pures. Appl., 9 (1903), 329–375 | Zbl
[3] Jager H., Kraaikamp C., “On the approximation by continued fractions”, J. Math. Pures. Appl., 92 (1989), 289–307 | MR
[4] Tong J., “Approximation by nearest integer continued fractions”, Math. Scand., 71 (1992), 161–166 | MR | Zbl
[5] Kraaikamp C., Shmidt T., Smeets L., “Tong's spectrum for Rosen continued fractions”, Journal de Théorie des Nombres de Bordeaux, 19 (2007), 641–661 | DOI | MR | Zbl
[6] Hartono Y., Ergotic Properties of Continued Fraction Algorithms, Delft University Press, 2003 | MR
[7] Gorkusha O. A., “O konechnykh tsepnykh drobyakh spetsialnogo vida”, Chebyshevskii sbornik, 9:1(25) (2008), 80–108
[8] Gorkusha O. A., “Nekotorye metricheskie svoistva $\Omega$-drobei”, Chebyshevskii sbornik, 13:2 (2012), 28–58
[9] Dajani K., Kraaikamp C., Ergotic Theory of Numbers, Carus Mathematical Monographs, 29, Mathematical Association of America, Washington, DC, 2002, 190 pp. | MR | Zbl