About strictly simple ternary algebras with operators
Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 196-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work is given some conditions of strictly simplicity for algebras with operators having one ternary main operation. It is described strictly simple unars with standard and symmetric Mal'tsev operations and with standard majority operation. The description of simple unars with standard majority operation is obtained as well.
Keywords: strictly simple algebra, ternary algebra with operators, unar with Mal'tsev operation, minority operation, majority operation.
@article{CHEB_2013_14_4_a17,
     author = {V. L. Usol'tsev},
     title = {About strictly simple ternary algebras with operators},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {196--204},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a17/}
}
TY  - JOUR
AU  - V. L. Usol'tsev
TI  - About strictly simple ternary algebras with operators
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 196
EP  - 204
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a17/
LA  - ru
ID  - CHEB_2013_14_4_a17
ER  - 
%0 Journal Article
%A V. L. Usol'tsev
%T About strictly simple ternary algebras with operators
%J Čebyševskij sbornik
%D 2013
%P 196-204
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a17/
%G ru
%F CHEB_2013_14_4_a17
V. L. Usol'tsev. About strictly simple ternary algebras with operators. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 196-204. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a17/

[1] Szendrei Á., “Simple surjective algebras having no proper subalgebras”, J. Austral. Math. Soc. Ser. A, 48 (1990), 329–346 | DOI | MR

[2] Szendrei Á., “A survey on strictly simple algebras and minimal varieties”, Univ. Algebra and Quasigroup Theory. Research and Exp. in Math., 19 (1992), 209–239 | MR | Zbl

[3] Kearnes K. A., Szendrei Á., “A characterization of minimal locally finite varieties”, Trans. Amer. Math. Soc., 349:5 (1997), 1749–1768 | DOI | MR | Zbl

[4] Kearnes K. A., Szendrei Á., “Projectivity and isomorphism of strictly simple algebras”, Algebra Universalis, 39 (1998), 45–56 | DOI | MR | Zbl

[5] Bulatov A., Krokhin A., Jeavons P., “Classifying the Complexity of Constraints using Finite Algebras”, SIAM J. Comput., 34:3 (2005), 720–752 | DOI | MR

[6] McKenzie R., Freese R., Commutator theory for congruence modular varieties, London Math. Soc. Lecture Notes Ser., 125, 1987, 227 pp. | MR | Zbl

[7] Valeriot M., “Finite simple Abelian algebras are strictly simple”, Proc. of the Amer. Math. Soc., 108 (1990), 49–57 | DOI | MR | Zbl

[8] Artamonov V. A., “Polynomially complete algebras”, Uch. zap. Orlovskogo gos. un-ta, 6(50):2 (2012), 23–29 (in Russian) | MR

[9] Maróti M., McKenzie R., “Existence theorems for weakly symmetric operations”, Algebra Universalis, 59:3–4 (2008), 463–489 | DOI | MR | Zbl

[10] Marković P., McKenzie R., “Few subpowers, congruence distributivity and near-unanimity terms”, Algebra Universalis, 58 (2008), 119–128 | DOI | MR | Zbl

[11] Usol'tsev V. L., “Simple and pseudosimple algebras with operators”, J. of Mathematical Sciences, 164:2 (2010), 281–293 | DOI | MR

[12] Kartashov V. K., “About unars with Mal'tsev operation”, Univ. algebra i ee prilozheniia, Tez. dokl. mezhdunar. sem. (Volgograd, 1999), 31–32 (in Russian)

[13] Usol'tsev V. L., “Free algebras of variety of unars with Mal'tsev operation, set by identity $p(x,y,x)=y$”, Chebyshevsky sb., 12:2(38) (2011), 127–134 (in Russian) | MR

[14] Usol'tsev V. L., “About polynomially complete and Abelian unars with Mal'tsev operation”, Uch. zap. Orlovskogo gos. un-ta, 6(50):2 (2012), 229–236 (in Russian)