Prime radicals of $\mathcal{K}$-ordered algebras as Kurosh radicals
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 65-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kopytov's order for any algebras over a field is considered. Some results concerned with the properties of a factoralgebra for a lattice $\mathcal{K}$-ordered algebras and its $l$-prime radical are obtained. Also, some results concerned with the properties of ordered homomorphisms, strictly ordered homomorphisms and lattice homomorphisms of lattice ordered algebras are presented.
Keywords: lattice $\mathcal{K}$-ordered algebra over a field, ordered homomorphism, prime ideal, prime radical.
@article{CHEB_2013_14_3_a8,
     author = {J. V. Kochetova},
     title = {Prime radicals of $\mathcal{K}$-ordered algebras as {Kurosh} radicals},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a8/}
}
TY  - JOUR
AU  - J. V. Kochetova
TI  - Prime radicals of $\mathcal{K}$-ordered algebras as Kurosh radicals
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 65
EP  - 74
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a8/
LA  - ru
ID  - CHEB_2013_14_3_a8
ER  - 
%0 Journal Article
%A J. V. Kochetova
%T Prime radicals of $\mathcal{K}$-ordered algebras as Kurosh radicals
%J Čebyševskij sbornik
%D 2013
%P 65-74
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a8/
%G ru
%F CHEB_2013_14_3_a8
J. V. Kochetova. Prime radicals of $\mathcal{K}$-ordered algebras as Kurosh radicals. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 65-74. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a8/

[1] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979, 496 pp. | MR

[2] Kopytov V. M., “Reshetochno uporyadochennye algebry Li”, Sib. mat. zhurn., XVIII:3 (1977), 595–607 | Zbl

[3] Kopytov V. M., Reshetochno uporyadochennye gruppy, Nauka, M., 1984, 320 pp. | MR | Zbl

[4] Kopytov V. M., “Uporyadochenie algebr Li”, Algebra i logika, 11:3 (1972), 295–325 | MR | Zbl

[5] Kochetova Yu. V., “Pervichnye i polupervichnye reshetochno uporyadochennye algebry Li”, Fundamentalnaya i prikladnaya matematika, 14:7 (2008), 137–143

[6] Kochetova Yu. V., “Pervichnyi radikal reshetochno uporyadochennykh algebr Li”, Uspekhi matematicheskikh nauk, 63:5 (2008), 191–192 | DOI | MR | Zbl

[7] Kochetova Yu. V., “O $l$-pervichnom radikale reshetochno uporyadochennykh algebr”, Fundamentalnaya i prikladnaya matematika, 17:5 (2011–2012), 55–68 | MR | Zbl

[8] Kochetova Yu. V., Shirshova E. E., “O gomomorfizmakh chastichno uporyadochennykh algebr Li”, Izbrannye voprosy algebry: sbornik statei, posvyaschennyi pamyati N. Ya. Medvedeva, Izd-vo Alt. un-ta, Barnaul, 2007, 131–142

[9] Kochetova Yu. V., Shirshova E. E., “O lineino uporyadochennykh lineinykh algebrakh”, Fundamentalnaya i prikladnaya matematika, 15:1 (2009), 53–63 | MR | Zbl

[10] Kurosh A. G., “Radikaly kolets i algebr”, Mat. sb., 33:1 (1953), 13–26 | MR | Zbl

[11] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[12] Mikhalëv A. V., Shatalova M. A., “Pervichnyi radikal reshetochno uporyadochennykh grupp”, Vestnik Mosk. un-ta. Ser. Matematika. Mekhanika, 1990, no. 2, 84–86

[13] Mikhalëv A. V., Shatalova M. A., “Pervichnyi radikal reshetochno uporyadochennykh kolets”, Sb. rabot po algebre, Izd-vo Mosk. un-ta, M., 1989, 178–184

[14] Mikhalëv A. V., Shirshova E. E., “Pervichnyi radikal $pl$-grupp”, Fundamentalnaya i prikladnaya matematika, 12:2 (2006), 193–199

[15] Pikhtilkov S. A., Strukturnaya teoriya spetsialnykh algebr Li, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2005, 130 pp.

[16] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965 | MR

[17] Schukin K. K., “$RI$-razreshimyi radikal gruppy”, Mat. sb., 52:4 (1960), 1021–1031 | MR | Zbl