An algebraically closed groups
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 49-51
Cet article a éte moissonné depuis la source Math-Net.Ru
Establish the solubility in any algebraically closed group $G$ of each equation of the form $$ w(x_1, \ldots , x_n)\, = \, g, $$ where $w(x_1, \ldots , x_n)$ — nonempty irreducible group word unknown $x_1,\dots, x_n$, and $g$ — arbitrary element of group $G$. Bibliography: 4 titles.
Mots-clés :
group
Keywords: algebraically closed group, equation over group.
Keywords: algebraically closed group, equation over group.
@article{CHEB_2013_14_3_a5,
author = {V. G. Durnev and O. V. Zetkina and A. I. Zetkina},
title = {An algebraically closed groups},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {49--51},
year = {2013},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a5/}
}
V. G. Durnev; O. V. Zetkina; A. I. Zetkina. An algebraically closed groups. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 49-51. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a5/
[1] Scott W. R., “Algebraically closed groups”, Proc. Amer. Math. Soc., 2 (1951), 118–121 | DOI | MR | Zbl
[2] Neumann B. H., “A note on algebraically closed groups”, J. London. Math. Soc., 27 (1952), 227–242 | MR
[3] Macintyre A., “On algebraically closed groups”, Ann. of Math., 96 (1972), 53–97 | DOI | MR | Zbl
[4] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR