An algebraically closed groups
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 49-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Establish the solubility in any algebraically closed group $G$ of each equation of the form $$ w(x_1, \ldots , x_n)\, = \, g, $$ where $w(x_1, \ldots , x_n)$ — nonempty irreducible group word unknown $x_1,\dots, x_n$, and $g$ — arbitrary element of group $G$. Bibliography: 4 titles.
Keywords: group, algebraically closed group, equation over group.
@article{CHEB_2013_14_3_a5,
     author = {V. G. Durnev and O. V. Zetkina and A. I. Zetkina},
     title = {An algebraically closed groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {49--51},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a5/}
}
TY  - JOUR
AU  - V. G. Durnev
AU  - O. V. Zetkina
AU  - A. I. Zetkina
TI  - An algebraically closed groups
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 49
EP  - 51
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a5/
LA  - ru
ID  - CHEB_2013_14_3_a5
ER  - 
%0 Journal Article
%A V. G. Durnev
%A O. V. Zetkina
%A A. I. Zetkina
%T An algebraically closed groups
%J Čebyševskij sbornik
%D 2013
%P 49-51
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a5/
%G ru
%F CHEB_2013_14_3_a5
V. G. Durnev; O. V. Zetkina; A. I. Zetkina. An algebraically closed groups. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 49-51. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a5/

[1] Scott W. R., “Algebraically closed groups”, Proc. Amer. Math. Soc., 2 (1951), 118–121 | DOI | MR | Zbl

[2] Neumann B. H., “A note on algebraically closed groups”, J. London. Math. Soc., 27 (1952), 227–242 | MR

[3] Macintyre A., “On algebraically closed groups”, Ann. of Math., 96 (1972), 53–97 | DOI | MR | Zbl

[4] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR