Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2013_14_3_a1, author = {D. N. Azarov}, title = {On the residual finiteness of generalized free products with cyclic amalgamation}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {9--19}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/} }
D. N. Azarov. On the residual finiteness of generalized free products with cyclic amalgamation. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 9-19. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/
[1] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. London Math. Soc., 7 (1957), 29–62 | DOI | MR | Zbl
[2] Hirsh K. A., “On infinite soluble groups”, J. London Math. Soc., 27 (1952), 81–85 | DOI | MR
[3] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106:2 (1963), 193–209 | DOI | MR | Zbl
[4] Azarov D. N., “O finitnoi approksimiruemosti svobodnogo proizvedeniya razreshimykh minimaksnykh grupp s tsiklicheskimi ob'edinennymi podgruppami”, Matematicheskie zametki, 93:4 (2013), 483–491 | DOI
[5] Lennox J., Robinson D., The theory of infinite soluble groups, Clarendon press, Oxford, 2004 | MR | Zbl
[6] Dyer J., “On the residual finiteness of generalized free products”, Trans. Amer. Math. Soc., 133:1 (1968), 131–143 | DOI | MR | Zbl
[7] Azarov D. N., “O nilpotentnoi approksimiruemosti svobodnykh proizvedenii svobodnykh grupp s tsiklicheskim ob'edineniem”, Matematicheskie zametki, 64:1 (1998), 3–8 | DOI | MR
[8] Kim G., Tang C. Y., “On generalized free products of residually finite $p$-groups”, J. of Algebra, 201 (1998), 317–327 | DOI | MR | Zbl
[9] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl
[10] Shmelkin A. L., “O nizhnem tsentralnom ryade svobodnogo proizvedeniya grupp”, Algebra i logika, 8:1 (1969), 129–137