On the residual finiteness of generalized free products with cyclic amalgamation
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 9-19
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be the free product of residually finite groups $A$ and $B$ with amalgamated cyclic subgroups $H$ and $K$. It is proved that if there exist homomorphisms of the groups $A$ and $B$ onto virtually polycyclic groups which are injective on the subgroups $H$ and $K$ then $G$ is a residually finite group.
Keywords:
generalized free product of groups, residually finite group.
@article{CHEB_2013_14_3_a1,
author = {D. N. Azarov},
title = {On the residual finiteness of generalized free products with cyclic amalgamation},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {9--19},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/}
}
D. N. Azarov. On the residual finiteness of generalized free products with cyclic amalgamation. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 9-19. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/