On the residual finiteness of generalized free products with cyclic amalgamation
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 9-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be the free product of residually finite groups $A$ and $B$ with amalgamated cyclic subgroups $H$ and $K$. It is proved that if there exist homomorphisms of the groups $A$ and $B$ onto virtually polycyclic groups which are injective on the subgroups $H$ and $K$ then $G$ is a residually finite group.
Keywords: generalized free product of groups, residually finite group.
@article{CHEB_2013_14_3_a1,
     author = {D. N. Azarov},
     title = {On the residual finiteness of generalized free products with cyclic amalgamation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - On the residual finiteness of generalized free products with cyclic amalgamation
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 9
EP  - 19
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/
LA  - ru
ID  - CHEB_2013_14_3_a1
ER  - 
%0 Journal Article
%A D. N. Azarov
%T On the residual finiteness of generalized free products with cyclic amalgamation
%J Čebyševskij sbornik
%D 2013
%P 9-19
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/
%G ru
%F CHEB_2013_14_3_a1
D. N. Azarov. On the residual finiteness of generalized free products with cyclic amalgamation. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 9-19. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/