On the residual finiteness of generalized free products with cyclic amalgamation
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 9-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be the free product of residually finite groups $A$ and $B$ with amalgamated cyclic subgroups $H$ and $K$. It is proved that if there exist homomorphisms of the groups $A$ and $B$ onto virtually polycyclic groups which are injective on the subgroups $H$ and $K$ then $G$ is a residually finite group.
Keywords: generalized free product of groups, residually finite group.
@article{CHEB_2013_14_3_a1,
     author = {D. N. Azarov},
     title = {On the residual finiteness of generalized free products with cyclic amalgamation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - On the residual finiteness of generalized free products with cyclic amalgamation
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 9
EP  - 19
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/
LA  - ru
ID  - CHEB_2013_14_3_a1
ER  - 
%0 Journal Article
%A D. N. Azarov
%T On the residual finiteness of generalized free products with cyclic amalgamation
%J Čebyševskij sbornik
%D 2013
%P 9-19
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/
%G ru
%F CHEB_2013_14_3_a1
D. N. Azarov. On the residual finiteness of generalized free products with cyclic amalgamation. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 9-19. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a1/

[1] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. London Math. Soc., 7 (1957), 29–62 | DOI | MR | Zbl

[2] Hirsh K. A., “On infinite soluble groups”, J. London Math. Soc., 27 (1952), 81–85 | DOI | MR

[3] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106:2 (1963), 193–209 | DOI | MR | Zbl

[4] Azarov D. N., “O finitnoi approksimiruemosti svobodnogo proizvedeniya razreshimykh minimaksnykh grupp s tsiklicheskimi ob'edinennymi podgruppami”, Matematicheskie zametki, 93:4 (2013), 483–491 | DOI

[5] Lennox J., Robinson D., The theory of infinite soluble groups, Clarendon press, Oxford, 2004 | MR | Zbl

[6] Dyer J., “On the residual finiteness of generalized free products”, Trans. Amer. Math. Soc., 133:1 (1968), 131–143 | DOI | MR | Zbl

[7] Azarov D. N., “O nilpotentnoi approksimiruemosti svobodnykh proizvedenii svobodnykh grupp s tsiklicheskim ob'edineniem”, Matematicheskie zametki, 64:1 (1998), 3–8 | DOI | MR

[8] Kim G., Tang C. Y., “On generalized free products of residually finite $p$-groups”, J. of Algebra, 201 (1998), 317–327 | DOI | MR | Zbl

[9] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[10] Shmelkin A. L., “O nizhnem tsentralnom ryade svobodnogo proizvedeniya grupp”, Algebra i logika, 8:1 (1969), 129–137