Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2013_14_2_a5, author = {D. V. Goryashin}, title = {Perfect squares of the form $[\alpha n]$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {68--73}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a5/} }
D. V. Goryashin. Perfect squares of the form $[\alpha n]$. Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 68-73. http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a5/
[1] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, 3-e izd., pererab. i dop., Drofa, M., 2003
[2] Begunts A. V., “Ob odnom analoge problemy delitelei Dirikhle”, Vestnik Mosk. un-ta. Ser. 1, Matematika. Mekhanika, 2004, no. 6, 52–56
[3] Begunts A. V., “O raspredelenii znachenii summ multiplikativnykh funktsii na obobschennykh arifmeticheskikh progressiyakh”, Chebyshevskii sbornik, 6:2(14) (2005), 52–74 | MR
[4] Abercrombie A. G., “Beatty sequences and multiplicative number theory”, Acta Arith., 70 (1995), 195–207 | MR | Zbl
[5] Abercrombie A. G., Banks W. D., Shparlinski I. E., “Arithmetic functions on Beatty sequences”, Acta Arith., 136:1 (2009), 81–89 | DOI | MR | Zbl
[6] Güloğlu A. M., Nevans C. W., “Sums of multiplicative functions over a Beatty sequence”, Bull. Austral. Math. Soc., 78 (2008), 327–334 | DOI | MR | Zbl
[7] Lü G. S., Zhai W. G., “The divisor problem for the Beatty sequences”, Acta Math. Sinica, 47 (2004), 1213–1216 | MR | Zbl
[8] Vaughan R. C., “On the distribution of $\alpha p$ modulo 1”, Mathematika, 24:48 (1977), 135–141 | DOI | MR