Perfect squares of the form $[\alpha n]$
Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 68-73

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is proved for the number of perfect squares in the sequence $[\alpha n]$ for algebraic numbers $\alpha$ and irrational numbers $\alpha$ with restricted partial quotients.
Keywords: perfect squares, Beatty sequence, asymptotic formula, exponential sums, Weyl sums.
@article{CHEB_2013_14_2_a5,
     author = {D. V. Goryashin},
     title = {Perfect squares of the form $[\alpha n]$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {68--73},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a5/}
}
TY  - JOUR
AU  - D. V. Goryashin
TI  - Perfect squares of the form $[\alpha n]$
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 68
EP  - 73
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a5/
LA  - ru
ID  - CHEB_2013_14_2_a5
ER  - 
%0 Journal Article
%A D. V. Goryashin
%T Perfect squares of the form $[\alpha n]$
%J Čebyševskij sbornik
%D 2013
%P 68-73
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a5/
%G ru
%F CHEB_2013_14_2_a5
D. V. Goryashin. Perfect squares of the form $[\alpha n]$. Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 68-73. http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a5/