On the speed of attainment of the remainder term exact boundaries in the Hecke--Kesten problem
Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 173-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

For irrationalities of bounded combinatorial type it is proved that the time of $\varepsilon$-approximation of exact boundary of the remainder term in Hecke-Kesten problem is inversely to $\varepsilon$.
Keywords: uniform distribution, Hecke–Kesten problem, three length theorem.
@article{CHEB_2013_14_2_a16,
     author = {A. V. Shutov},
     title = {On the speed of attainment of the remainder term exact boundaries in the {Hecke--Kesten} problem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {173--179},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a16/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - On the speed of attainment of the remainder term exact boundaries in the Hecke--Kesten problem
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 173
EP  - 179
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a16/
LA  - ru
ID  - CHEB_2013_14_2_a16
ER  - 
%0 Journal Article
%A A. V. Shutov
%T On the speed of attainment of the remainder term exact boundaries in the Hecke--Kesten problem
%J Čebyševskij sbornik
%D 2013
%P 173-179
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a16/
%G ru
%F CHEB_2013_14_2_a16
A. V. Shutov. On the speed of attainment of the remainder term exact boundaries in the Hecke--Kesten problem. Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a16/

[1] Krasilschikov V. V., Shutov A. V., “Opisanie i tochnye znacheniya maksimuma i minimuma ostatochnogo chlena problemy raspredeleniya drobnykh dolei”, Matematicheskie zametki, 89:1 (2011), 43–52 | DOI | MR | Zbl

[2] Shutov A. V., “Optimalnye otsenki v probleme raspredeleniya drobnykh dolei na mnozhestvakh ogranichennogo ostatka”, Vestnik SamGU. Estestvennonauchnaya seriya, 2007, no. 7(57), 168–175

[3] Shutov A. V., “O raspredelenii drobnykh dolei”, Chebyshevskii sbornik, 5:3 (2004), 112–121 | MR

[4] Shutov A. V., “O raspredelenii drobnykh dolei, II”, mezhvuz. sb. nauch. tr., Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, 3, Izd-vo Saratov. Un-ta, Saratov, 2005, 146–158

[5] Shutov A. V., “Sistemy schisleniya i mnozhestva ogranichennogo ostatka”, Chebyshevskii sbornik, 7:3 (2006), 110–128 | MR | Zbl

[6] Floreik K., “Une remarque sur la repartition des nombres $m\xi\bmod 1$”, Coll. Math. Wroclaw, 2 (1951), 323–324

[7] Hecke E., “Eber Analytische Funktionen und die Verteilung van Zahlen mod Eins”, Math. Sem. Hamburg Univ., 5 (1921), 54–76

[8] Kesten H., “On a conjecture of Erdös and Szüsz related to uniform distribution mod 1”, Acta Arithmetica, 12 (1966), 193–212 | MR | Zbl

[9] Siegel A., “Theoreme des trois longueurs et suites sturmiennes: mots d'agencement des longueurs”, Acta Arithmetica, 97 (2001), 195–210 | DOI | MR | Zbl

[10] Slater N. B., “Gaps and steps for the sequence $n\theta\bmod 1$”, Proc. Cambridge Phil. Soc., 63 (1967), 1115–1123 | DOI | MR | Zbl

[11] Shutov A. V., “New estimates in the Hecke–Kesten problem”, Anal. Probab. Methods Number Theory, eds. E. Manstavičisus et al., TEV, Vilnius, 2007 | MR | Zbl

[12] Weyl H., “Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene”, Rendicontidel Circolo Mathematico di Palermo, 30 (1910), 377–407 | DOI | Zbl