On the speed of attainment of the remainder term exact boundaries in the Hecke--Kesten problem
Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 173-179
Voir la notice de l'article provenant de la source Math-Net.Ru
For irrationalities of bounded combinatorial type it is proved that the time of $\varepsilon$-approximation of exact boundary of the remainder term in Hecke-Kesten problem is inversely to $\varepsilon$.
Keywords:
uniform distribution, Hecke–Kesten problem, three length theorem.
@article{CHEB_2013_14_2_a16,
author = {A. V. Shutov},
title = {On the speed of attainment of the remainder term exact boundaries in the {Hecke--Kesten} problem},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {173--179},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a16/}
}
TY - JOUR AU - A. V. Shutov TI - On the speed of attainment of the remainder term exact boundaries in the Hecke--Kesten problem JO - Čebyševskij sbornik PY - 2013 SP - 173 EP - 179 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a16/ LA - ru ID - CHEB_2013_14_2_a16 ER -
A. V. Shutov. On the speed of attainment of the remainder term exact boundaries in the Hecke--Kesten problem. Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a16/