The evolution of a satellite motion in the gravitational field of a viscoelastic planet with a core
Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 94-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the motion of a satellite in the gravitational field of a massive deformable planet. Planet is modeled as body that consists of a solid core and a viscoelastic shell of a Kelvin–Voigt material. The satellite is modeled as a point mass. The system of integro-differential equations for a motion of a mechanical system is got out from the variational principle of the d'Alembert–Lagrange according to the linear theory of elasticity. Approximate equations of motion in vector are constructed with asymptotic method of motions separation. This system of equations describes the dynamics of the «planet-satellite» with regard to the perturbations caused by elasticity and dissipation. To describe the evolution of the orbital parameters of a satellite, averaged differential equations were derived. Phase trajectories were constructed for particular cases, their stationary solutions were found and investigated on stability. In the case of the existence of two stationary orbits stationary solution that corresponding to the motion along the orbit of larger radius is asymptotically stable, and the orbit of smaller radius is unstable. Some of the planets in the solar system and their satellites are considered as examples. This problem is a model for the study of the tidal theory of planetary motion.
@article{CHEB_2013_14_1_a9,
     author = {A. V. Shatina and E. V. Sherstnev},
     title = {The evolution of a satellite motion in the gravitational field of a viscoelastic planet with a core},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {94--103},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a9/}
}
TY  - JOUR
AU  - A. V. Shatina
AU  - E. V. Sherstnev
TI  - The evolution of a satellite motion in the gravitational field of a viscoelastic planet with a core
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 94
EP  - 103
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a9/
LA  - ru
ID  - CHEB_2013_14_1_a9
ER  - 
%0 Journal Article
%A A. V. Shatina
%A E. V. Sherstnev
%T The evolution of a satellite motion in the gravitational field of a viscoelastic planet with a core
%J Čebyševskij sbornik
%D 2013
%P 94-103
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a9/
%G ru
%F CHEB_2013_14_1_a9
A. V. Shatina; E. V. Sherstnev. The evolution of a satellite motion in the gravitational field of a viscoelastic planet with a core. Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 94-103. http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a9/

[1] V. N. Zharkov (red.), Prilivy i rezonansy v Solnechnoi sisteme, sb. statei, Mir, M., 1975, 287 pp.

[2] Beletskii V. V., Dvizhenie sputnika otnositelno tsentra mass v gravitatsionnom pole, Izd-vo MGU, M., 1975, 308 pp.

[3] Markov Yu. G., Minyaev I. S., “Rol prilivnoi dissipatsii v dvizhenii planet i ikh sputnikov”, Astronomich. vestn., 28:2 (1994), 59–72

[4] Vilke V. G., Analiticheskaya mekhanika sistem s beskonechnym chislom stepenei svobody, v. 1, 2, Izd-vo mekh.-mat. fakulteta MGU, M., 1997

[5] Vilke V. G., “Dvizhenie vyazkouprugogo shara v tsentralnom nyutonovskom pole sil”, PMM, 44:3 (1980), 395–402 | MR | Zbl

[6] Shatina A. V., “Evolyutsiya dvizheniya vyazkouprugogo shara v tsentralnom nyutonovskom pole sil”, Kosmich. issledovaniya, 39:3 (2001), 303–315 | MR

[7] Vilke V. G., Shatina A. V., Shatina L. S., “Evolyutsiya dvizheniya dvukh vyazkouprugikh planet v pole sil vzaimnogo prityazheniya”, Kosmich. issledovaniya, 49:4 (2011), 355–362

[8] Shatina A. V., Sherstnev E. V., “Dvizhenie sputnika v gravitatsionnom pole vyazkouprugoi planety”, PMM, 76:6 (2012), 913–922 | MR

[9] Leibenzon L. S., Kratkii kurs teorii uprugosti, Gostekhizdat, M.–L., 1942, 304 pp.

[10] Myurrei K., Dermott S., Dinamika Solnechnoi sistemy, Fizmatlit, M., 2010, 588 pp.

[11] Kulikovskii P. G., Spravochnik lyubitelya astronomii, Kn. dom, M., 2009

[12] Duboshin G. N., Nebesnaya mekhanika. Osnovnye zadachi i metody, Nauka, M., 1975, 799 pp.