To the distribution of prime numbers in the polynomials of second degree with integer coefficients
Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 56-60
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we prove: Theorem. Each volume $A>A'$ there are more $ \frac A{5\ln A}$ of polynomials of second degree with integer coefficients, senior coefficients are equal to two, each of which contains more $ \frac A{5\ln^{1+\varepsilon} A}$ simple ($\varepsilon>0$ — constant).
Keywords:
Prime numbers, the distribution of Prime numbers in the values of polynomials.
@article{CHEB_2013_14_1_a4,
author = {I. I. Illyssov},
title = {To the distribution of prime numbers in the polynomials of second degree with integer coefficients},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {56--60},
year = {2013},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a4/}
}
I. I. Illyssov. To the distribution of prime numbers in the polynomials of second degree with integer coefficients. Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 56-60. http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a4/
[1] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR
[2] Serpinskii V., O reshenii uravnenii v tselykh chislakh, Gos. izd-vo fiz.-mat. literatury, M., 1961
[3] Serpinskii V., Chto my znaem i chego ne znaem o prostykh chislakh, Gos. izd-vo fiz.-mat. literatury, M., 1963