Asymptotical formula for fractional moments of some Dirichlet series
Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 18-33
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $v \in \mathbf{N}$. Let the function $\Phi(T)$ arbitrarily slow tend to $+\infty$ with $T \rightarrow +\infty $. The asymptotical formulas for fractional moments of the Riemann zeta-function $\int\limits_T^{2T}|\zeta(\sigma+it)|^{2/v}dt$ for ${1}/{2}+{\Phi(T)}/{\ln T}\le \sigma1$ and for fractional moments of the arithmetical Dirichlet series of second degree from Selberg's class $\int\limits_T^{2T}|L(\sigma+it)|^{2/v}dt$ for ${1}/{2}+{\Phi(T)}/{\sqrt{\ln T}}\le \sigma1$, are obtained.
@article{CHEB_2013_14_1_a2,
author = {S. A. Gritsenko and L. N. Kurtova},
title = {Asymptotical formula for fractional moments of some {Dirichlet} series},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {18--33},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a2/}
}
S. A. Gritsenko; L. N. Kurtova. Asymptotical formula for fractional moments of some Dirichlet series. Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 18-33. http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a2/