Asymptotical formula for fractional moments of some Dirichlet series
Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 18-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $v \in \mathbf{N}$. Let the function $\Phi(T)$ arbitrarily slow tend to $+\infty$ with $T \rightarrow +\infty $. The asymptotical formulas for fractional moments of the Riemann zeta-function $\int\limits_T^{2T}|\zeta(\sigma+it)|^{2/v}dt$ for ${1}/{2}+{\Phi(T)}/{\ln T}\le \sigma1$ and for fractional moments of the arithmetical Dirichlet series of second degree from Selberg's class $\int\limits_T^{2T}|L(\sigma+it)|^{2/v}dt$ for ${1}/{2}+{\Phi(T)}/{\sqrt{\ln T}}\le \sigma1$, are obtained.
@article{CHEB_2013_14_1_a2,
     author = {S. A. Gritsenko and L. N. Kurtova},
     title = {Asymptotical formula for fractional moments of some {Dirichlet} series},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a2/}
}
TY  - JOUR
AU  - S. A. Gritsenko
AU  - L. N. Kurtova
TI  - Asymptotical formula for fractional moments of some Dirichlet series
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 18
EP  - 33
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a2/
LA  - ru
ID  - CHEB_2013_14_1_a2
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%A L. N. Kurtova
%T Asymptotical formula for fractional moments of some Dirichlet series
%J Čebyševskij sbornik
%D 2013
%P 18-33
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a2/
%G ru
%F CHEB_2013_14_1_a2
S. A. Gritsenko; L. N. Kurtova. Asymptotical formula for fractional moments of some Dirichlet series. Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 18-33. http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a2/

[1] Ingham A. E., “Mean-value theorems in the theory of the Riemann Zeta-function”, Proc. London Math. Soc., 27:2 (1927), 273—300 | MR | Zbl

[2] Davenport H., “Note on mean-value theorems for the Riemann zeta-function”, J. London Math. Soc., 10 (1935), 136—138 | DOI | MR

[3] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, Izd. inostr. liter., M., 1953

[4] Turganaliev R. T., “Asimptoticheskaya formula dlya srednikh znachenii drobnoi stepeni dzeta-funktsii Rimana”, Trudy Matematicheskogo instituta AN SSSR, 158, 1981, 203—226 | MR | Zbl

[5] Dzhabbarov I. Sh., “Drobnye momenty $\zeta$-funktsii”, Matematicheskie zametki, 38:4 (1985), 481—493 | MR | Zbl

[6] Selberg A., “Old and new conjectures and results about a class of Dirichlet series”, Proc. of the Amalfi conference on Analytic Number Theory (Univ. di. Salerno, 1992), 365–387 | MR

[7] Corney J. B., Ghosh A., “On the Selberg class of Dirichlet series: small degrees”, Duke Math. J., 72:3 (1993), 673–695 | DOI | MR

[8] Gabriel R. M., “Some results concerning the integrals of moduli or regular functions along certain curves”, J. London Math. Soc., 2 (1927), 112–117 | DOI | MR | Zbl

[9] Montgomery H. L., Vaughan R. C., “Hilbert's inequality”, J. London Math. Soc., 2:8 (1974), 73–82 | DOI | MR

[10] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[11] Heath-Brown D. R., “Fractional moments of the Riemann Zeta-function”, J. London Math. Soc., 24:2 (1981), 65–78 | DOI | MR | Zbl

[12] Gritsenko S. A., “O nulyakh spetsialnogo vida funktsii, svyazannykh s $L$-funktsiyami Gekke mnimykh kvadratichnykh polei”, Izv. RAN. Ser. Mat., 61:1 (1997), 45–68 | DOI | MR | Zbl