Asymptotical formula for fractional moments of some Dirichlet series
Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 18-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $v \in \mathbf{N}$. Let the function $\Phi(T)$ arbitrarily slow tend to $+\infty$ with $T \rightarrow +\infty $. The asymptotical formulas for fractional moments of the Riemann zeta-function $\int\limits_T^{2T}|\zeta(\sigma+it)|^{2/v}dt$ for ${1}/{2}+{\Phi(T)}/{\ln T}\le \sigma1$ and for fractional moments of the arithmetical Dirichlet series of second degree from Selberg's class $\int\limits_T^{2T}|L(\sigma+it)|^{2/v}dt$ for ${1}/{2}+{\Phi(T)}/{\sqrt{\ln T}}\le \sigma1$, are obtained.
@article{CHEB_2013_14_1_a2,
     author = {S. A. Gritsenko and L. N. Kurtova},
     title = {Asymptotical formula for fractional moments of some {Dirichlet} series},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a2/}
}
TY  - JOUR
AU  - S. A. Gritsenko
AU  - L. N. Kurtova
TI  - Asymptotical formula for fractional moments of some Dirichlet series
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 18
EP  - 33
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a2/
LA  - ru
ID  - CHEB_2013_14_1_a2
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%A L. N. Kurtova
%T Asymptotical formula for fractional moments of some Dirichlet series
%J Čebyševskij sbornik
%D 2013
%P 18-33
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a2/
%G ru
%F CHEB_2013_14_1_a2
S. A. Gritsenko; L. N. Kurtova. Asymptotical formula for fractional moments of some Dirichlet series. Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 18-33. http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a2/