Extremums of vector-valued functions of several real variables
Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 119-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we try to give a generalization of the usual notion of extremum of real functions to the vector-valued functions of several real variables. Our aim is that in this generalization remain valid the usual properties and relations for extremum of real functions. A considered generalization is also characterized by an equivalent generalization. Our definitions and related results are illustrated by numerous examples.
@article{CHEB_2013_14_1_a11,
     author = {Jela \v{S}u\v{s}i\'c},
     title = {Extremums of vector-valued functions of several real variables},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {119--134},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a11/}
}
TY  - JOUR
AU  - Jela Šušić
TI  - Extremums of vector-valued functions of several real variables
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 119
EP  - 134
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a11/
LA  - ru
ID  - CHEB_2013_14_1_a11
ER  - 
%0 Journal Article
%A Jela Šušić
%T Extremums of vector-valued functions of several real variables
%J Čebyševskij sbornik
%D 2013
%P 119-134
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a11/
%G ru
%F CHEB_2013_14_1_a11
Jela Šušić. Extremums of vector-valued functions of several real variables. Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 119-134. http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a11/

[1] Arhipov G. I., Sadovničij V. A., Čubarikov V. N., Lekcii po matematicheskomu analizu, v. I, MSU, M., 1995 (in Russian)

[2] Arhipov G. I., Sadovničij V. A., Čubarikov V. N., Lekcii po matematicheskomu analizu, v. II, MSU, M., 1997 (in Russian)