On some questions in diophanite approximations
Čebyševskij sbornik, Tome 13 (2012) no. 3, pp. 4-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is information review on the problem of the best diophantine approximations. First part is review continued fraction's theory. In second part are given the most known facts on a problem of joint approximations. In third part are offered some algorithms of search joint diophantine approximations.
@article{CHEB_2012_13_3_a0,
     author = {Y. A. Basalov and A. N. Pacukova},
     title = {On some questions in diophanite approximations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {4--27},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a0/}
}
TY  - JOUR
AU  - Y. A. Basalov
AU  - A. N. Pacukova
TI  - On some questions in diophanite approximations
JO  - Čebyševskij sbornik
PY  - 2012
SP  - 4
EP  - 27
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a0/
LA  - ru
ID  - CHEB_2012_13_3_a0
ER  - 
%0 Journal Article
%A Y. A. Basalov
%A A. N. Pacukova
%T On some questions in diophanite approximations
%J Čebyševskij sbornik
%D 2012
%P 4-27
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a0/
%G ru
%F CHEB_2012_13_3_a0
Y. A. Basalov; A. N. Pacukova. On some questions in diophanite approximations. Čebyševskij sbornik, Tome 13 (2012) no. 3, pp. 4-27. http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a0/

[1] Arnold V. I., Tsepnye drobi, Izd-vo MTsNMO, M., 2001, 40 pp.

[2] Galkin O. E., Kalyagin V. A., Tulyakov D. N., Vvedenie v teoriyu approksimatsii, Nizhnii Novgorod, 2000, 99 pp.

[3] Devenport G., Vysshaya arifmetika. Vvedenie v teoriyu chisel, IL, M., 1965, 176 pp.

[4] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh neravenstv, IIL, M., 1961, 212 pp.

[5] Moschevitin N. G., “Mnogomernye diofantovy priblizheniya i dinamicheskie sistemy”, Regulyarnaya i khaoticheskaya dinamika, 2:1 (1997), 82–95

[6] Khinchin A. Ya., Tsepnye drobi, 2-e izd., GITTL, M., 1949, 115 pp.

[7] Shmidt V. M., Diofantovy priblizheniya, Per. s angl., Mir, M., 1983, 228 pp. | MR

[8] Adams W. W., “The best two-dimensional diophanite approximation constant for cubic irrationals”, Pacific journal of mathematics, 91:1 (1980), 29–30 | DOI | MR

[9] Arnold V. I., “Higher dimensional continued fractions”, Regulyarnaya i khaoticheskaya dinamika, 3:3 (1998), 10–16 | MR

[10] Aryal S., Multidimensional continued fractions, Trinity College, Hartford, 2009, 25 pp.

[11] Borosh I., Fraenkel A. S., “A generalization of Jarnik's theorem on diophanite approximation to ridout tupe numbers”, Transactoins of American mathematic society, 211 (1975), 23–38 | MR | Zbl

[12] Chavallier N., “Best simultaneous diophanite approximations for some cubic algebraic numbers”, Journal de Theorie des Nomberes de Bordeaux, 14:2 (2002), 403–414 | DOI | MR

[13] Cusick J. W., “The two dimensional diophanite approximation constant”, Pacific journal of mathematics, 105:1 (1983), 53–67 | DOI | MR | Zbl

[14] Ito S., Yasutomi S.-I., “On simultaneous Diophantine approximation to periodic points related to modified Jacobi–Perron algorithm”, Probability and Number Theory, 2005, 171–184 | MR

[15] Lagarias J. S., Diophanite approximation of rationals by rationals, Bell Laboratories, 2000, 45 pp.

[16] Lagarias J. S., “Best simulateneous diophanite approximations. Growth rates of best approximation denominators”, Transactoins of American mathmatic society, 272:2 (1982), 545–554 | MR | Zbl

[17] Lagarias J. S., “Best simulateneous diophanite approximations. Behavior of consecutive best approximation”, Pacific journal of mathematics, 102:1 (1982), 61–88 | DOI | MR | Zbl

[18] Mack J. M., “Simultaneous diophanite approximation”, Mathematic Society A, 1976, no. 24, 266–285 | MR

[19] Tamura J.-I., Yasutomi S.-I., “A new multidimensional continued fraction algorithm”, Mathematic of Computation, 78:268 (2009), 2209–2222 | DOI | MR | Zbl

[20] Kato Y., Aomoto K., “Jacobi-Perron Algorithms, Bi-Orthogonal Polynomials and Inverse Scattering Problems”, RIMS, 1984, no. 20, 635–658 | DOI | MR | Zbl