Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2012_13_3_a0, author = {Y. A. Basalov and A. N. Pacukova}, title = {On some questions in diophanite approximations}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {4--27}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a0/} }
Y. A. Basalov; A. N. Pacukova. On some questions in diophanite approximations. Čebyševskij sbornik, Tome 13 (2012) no. 3, pp. 4-27. http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a0/
[1] Arnold V. I., Tsepnye drobi, Izd-vo MTsNMO, M., 2001, 40 pp.
[2] Galkin O. E., Kalyagin V. A., Tulyakov D. N., Vvedenie v teoriyu approksimatsii, Nizhnii Novgorod, 2000, 99 pp.
[3] Devenport G., Vysshaya arifmetika. Vvedenie v teoriyu chisel, IL, M., 1965, 176 pp.
[4] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh neravenstv, IIL, M., 1961, 212 pp.
[5] Moschevitin N. G., “Mnogomernye diofantovy priblizheniya i dinamicheskie sistemy”, Regulyarnaya i khaoticheskaya dinamika, 2:1 (1997), 82–95
[6] Khinchin A. Ya., Tsepnye drobi, 2-e izd., GITTL, M., 1949, 115 pp.
[7] Shmidt V. M., Diofantovy priblizheniya, Per. s angl., Mir, M., 1983, 228 pp. | MR
[8] Adams W. W., “The best two-dimensional diophanite approximation constant for cubic irrationals”, Pacific journal of mathematics, 91:1 (1980), 29–30 | DOI | MR
[9] Arnold V. I., “Higher dimensional continued fractions”, Regulyarnaya i khaoticheskaya dinamika, 3:3 (1998), 10–16 | MR
[10] Aryal S., Multidimensional continued fractions, Trinity College, Hartford, 2009, 25 pp.
[11] Borosh I., Fraenkel A. S., “A generalization of Jarnik's theorem on diophanite approximation to ridout tupe numbers”, Transactoins of American mathematic society, 211 (1975), 23–38 | MR | Zbl
[12] Chavallier N., “Best simultaneous diophanite approximations for some cubic algebraic numbers”, Journal de Theorie des Nomberes de Bordeaux, 14:2 (2002), 403–414 | DOI | MR
[13] Cusick J. W., “The two dimensional diophanite approximation constant”, Pacific journal of mathematics, 105:1 (1983), 53–67 | DOI | MR | Zbl
[14] Ito S., Yasutomi S.-I., “On simultaneous Diophantine approximation to periodic points related to modified Jacobi–Perron algorithm”, Probability and Number Theory, 2005, 171–184 | MR
[15] Lagarias J. S., Diophanite approximation of rationals by rationals, Bell Laboratories, 2000, 45 pp.
[16] Lagarias J. S., “Best simulateneous diophanite approximations. Growth rates of best approximation denominators”, Transactoins of American mathmatic society, 272:2 (1982), 545–554 | MR | Zbl
[17] Lagarias J. S., “Best simulateneous diophanite approximations. Behavior of consecutive best approximation”, Pacific journal of mathematics, 102:1 (1982), 61–88 | DOI | MR | Zbl
[18] Mack J. M., “Simultaneous diophanite approximation”, Mathematic Society A, 1976, no. 24, 266–285 | MR
[19] Tamura J.-I., Yasutomi S.-I., “A new multidimensional continued fraction algorithm”, Mathematic of Computation, 78:268 (2009), 2209–2222 | DOI | MR | Zbl
[20] Kato Y., Aomoto K., “Jacobi-Perron Algorithms, Bi-Orthogonal Polynomials and Inverse Scattering Problems”, RIMS, 1984, no. 20, 635–658 | DOI | MR | Zbl