On some questions in diophanite approximations
Čebyševskij sbornik, Tome 13 (2012) no. 3, pp. 4-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is information review on the problem of the best diophantine approximations. First part is review continued fraction's theory. In second part are given the most known facts on a problem of joint approximations. In third part are offered some algorithms of search joint diophantine approximations.
@article{CHEB_2012_13_3_a0,
     author = {Y. A. Basalov and A. N. Pacukova},
     title = {On some questions in diophanite approximations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {4--27},
     year = {2012},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a0/}
}
TY  - JOUR
AU  - Y. A. Basalov
AU  - A. N. Pacukova
TI  - On some questions in diophanite approximations
JO  - Čebyševskij sbornik
PY  - 2012
SP  - 4
EP  - 27
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a0/
LA  - ru
ID  - CHEB_2012_13_3_a0
ER  - 
%0 Journal Article
%A Y. A. Basalov
%A A. N. Pacukova
%T On some questions in diophanite approximations
%J Čebyševskij sbornik
%D 2012
%P 4-27
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a0/
%G ru
%F CHEB_2012_13_3_a0
Y. A. Basalov; A. N. Pacukova. On some questions in diophanite approximations. Čebyševskij sbornik, Tome 13 (2012) no. 3, pp. 4-27. http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a0/

[1] Arnold V. I., Tsepnye drobi, Izd-vo MTsNMO, M., 2001, 40 pp.

[2] Galkin O. E., Kalyagin V. A., Tulyakov D. N., Vvedenie v teoriyu approksimatsii, Nizhnii Novgorod, 2000, 99 pp.

[3] Devenport G., Vysshaya arifmetika. Vvedenie v teoriyu chisel, IL, M., 1965, 176 pp.

[4] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh neravenstv, IIL, M., 1961, 212 pp.

[5] Moschevitin N. G., “Mnogomernye diofantovy priblizheniya i dinamicheskie sistemy”, Regulyarnaya i khaoticheskaya dinamika, 2:1 (1997), 82–95

[6] Khinchin A. Ya., Tsepnye drobi, 2-e izd., GITTL, M., 1949, 115 pp.

[7] Shmidt V. M., Diofantovy priblizheniya, Per. s angl., Mir, M., 1983, 228 pp. | MR

[8] Adams W. W., “The best two-dimensional diophanite approximation constant for cubic irrationals”, Pacific journal of mathematics, 91:1 (1980), 29–30 | DOI | MR

[9] Arnold V. I., “Higher dimensional continued fractions”, Regulyarnaya i khaoticheskaya dinamika, 3:3 (1998), 10–16 | MR

[10] Aryal S., Multidimensional continued fractions, Trinity College, Hartford, 2009, 25 pp.

[11] Borosh I., Fraenkel A. S., “A generalization of Jarnik's theorem on diophanite approximation to ridout tupe numbers”, Transactoins of American mathematic society, 211 (1975), 23–38 | MR | Zbl

[12] Chavallier N., “Best simultaneous diophanite approximations for some cubic algebraic numbers”, Journal de Theorie des Nomberes de Bordeaux, 14:2 (2002), 403–414 | DOI | MR

[13] Cusick J. W., “The two dimensional diophanite approximation constant”, Pacific journal of mathematics, 105:1 (1983), 53–67 | DOI | MR | Zbl

[14] Ito S., Yasutomi S.-I., “On simultaneous Diophantine approximation to periodic points related to modified Jacobi–Perron algorithm”, Probability and Number Theory, 2005, 171–184 | MR

[15] Lagarias J. S., Diophanite approximation of rationals by rationals, Bell Laboratories, 2000, 45 pp.

[16] Lagarias J. S., “Best simulateneous diophanite approximations. Growth rates of best approximation denominators”, Transactoins of American mathmatic society, 272:2 (1982), 545–554 | MR | Zbl

[17] Lagarias J. S., “Best simulateneous diophanite approximations. Behavior of consecutive best approximation”, Pacific journal of mathematics, 102:1 (1982), 61–88 | DOI | MR | Zbl

[18] Mack J. M., “Simultaneous diophanite approximation”, Mathematic Society A, 1976, no. 24, 266–285 | MR

[19] Tamura J.-I., Yasutomi S.-I., “A new multidimensional continued fraction algorithm”, Mathematic of Computation, 78:268 (2009), 2209–2222 | DOI | MR | Zbl

[20] Kato Y., Aomoto K., “Jacobi-Perron Algorithms, Bi-Orthogonal Polynomials and Inverse Scattering Problems”, RIMS, 1984, no. 20, 635–658 | DOI | MR | Zbl