About simultaneous representation of numbers by sum of primes
Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 12-17
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper proved theorem
Theorema. If $X$ -it is enough big, $\delta$ ($0\delta1$) it is enough small real numbers, that fair estimation
$$
J(\overrightarrow{b})>\frac{\Bigl(\frac{1}{\sqrt{n}}3(n!)^{2}B^{(2n-1)}|\overrightarrow{b}|\Bigr)^{1-\frac{\delta}{10(n-1)}}}{\Bigl(\ln\Bigl(\frac{1}{\sqrt{n}}3(n!)^{2}B^{(2n-1)}|\overrightarrow{b}|\Bigr)\Bigr)^{n+1}},
$$
for all vector $\overrightarrow{b}\in U(X)$ with the exclusion of no more than
$$
E(X)^{n-\frac{\delta}{17n^{3}}}
$$
the vector of them. Here $B=\max\{3|a_{ij}|\}$, $1\leq i \leq n$, $1\leq j \leq n+1$.
@article{CHEB_2012_13_2_a2,
author = {I. Allakov and A. Safarov},
title = {About simultaneous representation of numbers by sum of primes},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {12--17},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a2/}
}
I. Allakov; A. Safarov. About simultaneous representation of numbers by sum of primes. Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 12-17. http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a2/