About simultaneous representation of numbers by sum of primes
Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 12-17

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper proved theorem Theorema. If $X$ -it is enough big, $\delta$ ($0\delta1$) it is enough small real numbers, that fair estimation $$ J(\overrightarrow{b})>\frac{\Bigl(\frac{1}{\sqrt{n}}3(n!)^{2}B^{(2n-1)}|\overrightarrow{b}|\Bigr)^{1-\frac{\delta}{10(n-1)}}}{\Bigl(\ln\Bigl(\frac{1}{\sqrt{n}}3(n!)^{2}B^{(2n-1)}|\overrightarrow{b}|\Bigr)\Bigr)^{n+1}}, $$ for all vector $\overrightarrow{b}\in U(X)$ with the exclusion of no more than $$ E(X)^{n-\frac{\delta}{17n^{3}}} $$ the vector of them. Here $B=\max\{3|a_{ij}|\}$, $1\leq i \leq n$, $1\leq j \leq n+1$.
@article{CHEB_2012_13_2_a2,
     author = {I. Allakov and A. Safarov},
     title = {About simultaneous representation of  numbers by sum of primes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {12--17},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a2/}
}
TY  - JOUR
AU  - I. Allakov
AU  - A. Safarov
TI  - About simultaneous representation of  numbers by sum of primes
JO  - Čebyševskij sbornik
PY  - 2012
SP  - 12
EP  - 17
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a2/
LA  - ru
ID  - CHEB_2012_13_2_a2
ER  - 
%0 Journal Article
%A I. Allakov
%A A. Safarov
%T About simultaneous representation of  numbers by sum of primes
%J Čebyševskij sbornik
%D 2012
%P 12-17
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a2/
%G ru
%F CHEB_2012_13_2_a2
I. Allakov; A. Safarov. About simultaneous representation of  numbers by sum of primes. Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 12-17. http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a2/