Periodic semi-groups in the ring of residue classes
Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 124-130

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the structure periodic semi-groups $S(m;n)$ have been learnt which are given by definite coorelation $X^n=X$, $n>1$ in the ring $Z_m$ of residue classes the modulo $m$. The main result which determines the structure $S(m;n)$ is expressed by correlation: $S(m;n)=\cup_{i\in I(m)}G(i)$, $G(i_1)\cap G(i_2)=\varnothing$, $i_1,i_2\in I_m$, $i_1\neq i_2$, where $G(i)$ — maximal undergroup (in sence [6]) is generated by idempotent $i$ of the semi-lattice $I(m)\subset Z_m$.
@article{CHEB_2012_13_2_a15,
     author = {V. E. Firstov},
     title = {Periodic semi-groups in the ring of residue classes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {124--130},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a15/}
}
TY  - JOUR
AU  - V. E. Firstov
TI  - Periodic semi-groups in the ring of residue classes
JO  - Čebyševskij sbornik
PY  - 2012
SP  - 124
EP  - 130
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a15/
LA  - ru
ID  - CHEB_2012_13_2_a15
ER  - 
%0 Journal Article
%A V. E. Firstov
%T Periodic semi-groups in the ring of residue classes
%J Čebyševskij sbornik
%D 2012
%P 124-130
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a15/
%G ru
%F CHEB_2012_13_2_a15
V. E. Firstov. Periodic semi-groups in the ring of residue classes. Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 124-130. http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a15/