Absolute ideals of mixed abelian groups
Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 153-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring on an abelian group $G$ is a ring, whose additive group is isomorphic to $G$. A subgroup $A$ of an abelian group $G$ is called its absolute ideal, if $A$ is an ideal in every ring on $G$. In 1973. L.Fuchs formulated the problem of describing abelian groups, on which there exists a ring structure, whose every ideal is absolute. Such abelian group is call a $RAI$-group. A group $G$ is a group of class $K$, if its $p$-component $T_p(G)$ is a separable and unbounded group for all prime $p$ such that $T_p(G) \ne 0$ and every multiplication on the torsion subgroup $T(G)$ can be uniquely continued to a multiplication on $G$. In this work, a description of countable $RAI$-groups of class $K$ is given.
@article{CHEB_2012_13_1_a17,
     author = {Pham Thi Thu Thuy},
     title = {Absolute ideals of mixed abelian groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {153--164},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a17/}
}
TY  - JOUR
AU  - Pham Thi Thu Thuy
TI  - Absolute ideals of mixed abelian groups
JO  - Čebyševskij sbornik
PY  - 2012
SP  - 153
EP  - 164
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a17/
LA  - ru
ID  - CHEB_2012_13_1_a17
ER  - 
%0 Journal Article
%A Pham Thi Thu Thuy
%T Absolute ideals of mixed abelian groups
%J Čebyševskij sbornik
%D 2012
%P 153-164
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a17/
%G ru
%F CHEB_2012_13_1_a17
Pham Thi Thu Thuy. Absolute ideals of mixed abelian groups. Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 153-164. http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a17/

[1] Fuks L., Beskonechnye abelevy gruppy, v. 1,2, Mir, Moskva, 1977

[2] Mishina A. P., Skornyakov D. A., Abelevy gruppy i moduli, Nauka, M., 1969 | MR | Zbl

[3] Fried E., “On the subgroups of abelian groups that are ideals in every ring”, Proc. Colloq. Abelian Groups, Budapest, 1964, 51–55 | MR | Zbl

[4] Megibben C., “On subgroups of primary abelian groups”, Publ. Math. Debrecen, 12 (1965), 293–294 | MR | Zbl

[5] Moskalenko A. I., “O dline rasschepleniya abelevykh grupp”, Matematicheskie zametki, 24:6 (1978), 749–761 | MR