Absolute ideals of mixed abelian groups
Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 153-164
Cet article a éte moissonné depuis la source Math-Net.Ru
A ring on an abelian group $G$ is a ring, whose additive group is isomorphic to $G$. A subgroup $A$ of an abelian group $G$ is called its absolute ideal, if $A$ is an ideal in every ring on $G$. In 1973. L.Fuchs formulated the problem of describing abelian groups, on which there exists a ring structure, whose every ideal is absolute. Such abelian group is call a $RAI$-group. A group $G$ is a group of class $K$, if its $p$-component $T_p(G)$ is a separable and unbounded group for all prime $p$ such that $T_p(G) \ne 0$ and every multiplication on the torsion subgroup $T(G)$ can be uniquely continued to a multiplication on $G$. In this work, a description of countable $RAI$-groups of class $K$ is given.
@article{CHEB_2012_13_1_a17,
author = {Pham Thi Thu Thuy},
title = {Absolute ideals of mixed abelian groups},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {153--164},
year = {2012},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a17/}
}
Pham Thi Thu Thuy. Absolute ideals of mixed abelian groups. Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 153-164. http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a17/
[1] Fuks L., Beskonechnye abelevy gruppy, v. 1,2, Mir, Moskva, 1977
[2] Mishina A. P., Skornyakov D. A., Abelevy gruppy i moduli, Nauka, M., 1969 | MR | Zbl
[3] Fried E., “On the subgroups of abelian groups that are ideals in every ring”, Proc. Colloq. Abelian Groups, Budapest, 1964, 51–55 | MR | Zbl
[4] Megibben C., “On subgroups of primary abelian groups”, Publ. Math. Debrecen, 12 (1965), 293–294 | MR | Zbl
[5] Moskalenko A. I., “O dline rasschepleniya abelevykh grupp”, Matematicheskie zametki, 24:6 (1978), 749–761 | MR