Regular and ubiquitous systems for simultaneous Diophantine approximations
Čebyševskij sbornik, Tome 12 (2011) no. 4, pp. 43-74
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the Khintchine type theorem for polynomials in the divergence case is generalised to simultaneous approximations in $\mathbb{R}^k\times\mathbb{C}^l\times\mathbb{Q}_p^m$ and to approximations which incorporate a natural restriction on derivatives. The proof builds upon the construction of the optimal regular systems, the ubiquity technique and the construction of a system of close conjugate algebraic numbers.
@article{CHEB_2011_12_4_a5,
author = {N. V. Budarina},
title = {Regular and ubiquitous systems for simultaneous {Diophantine} approximations},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {43--74},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_4_a5/}
}
N. V. Budarina. Regular and ubiquitous systems for simultaneous Diophantine approximations. Čebyševskij sbornik, Tome 12 (2011) no. 4, pp. 43-74. http://geodesic.mathdoc.fr/item/CHEB_2011_12_4_a5/