Badly approximable vectors in affine subspaces: Jarn\'{\i}k-type result
Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 77-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider irrational affine subspace $ A\subset \mathbb{R}^d$ of dimension $a$. We prove that the set $$ \{\xi =(\xi_1,...,\xi_d) \in { A}:\quad q^{1/a}\cdot \max_{1\le i \le d} ||q\xi_i|| \to \infty,\quad q\to \infty\} $$ is an $\alpha$-winning set for every $\alpha \in (0,1/2]$.
@article{CHEB_2011_12_2_a9,
     author = {Nikolay Moshchevitin},
     title = {Badly approximable vectors in affine subspaces: {Jarn\'{\i}k-type} result},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {77--84},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a9/}
}
TY  - JOUR
AU  - Nikolay Moshchevitin
TI  - Badly approximable vectors in affine subspaces: Jarn\'{\i}k-type result
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 77
EP  - 84
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a9/
LA  - en
ID  - CHEB_2011_12_2_a9
ER  - 
%0 Journal Article
%A Nikolay Moshchevitin
%T Badly approximable vectors in affine subspaces: Jarn\'{\i}k-type result
%J Čebyševskij sbornik
%D 2011
%P 77-84
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a9/
%G en
%F CHEB_2011_12_2_a9
Nikolay Moshchevitin. Badly approximable vectors in affine subspaces: Jarn\'{\i}k-type result. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 77-84. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a9/

[1] V. Jarník, “Zum Khintchineschen “Übertragungssatz””, Travaux de L'Institut Mathematique de Tbilissi, v. 3, 1938, 193–212 | Zbl

[2] V. Jarník, “Eine Bemerkung uber diophantische approximationen”, Math. Zeitschr., 72 (1959), 187–191 | DOI | MR | Zbl

[3] A. Y. Khinchine, “Über eine klasse linear Diophantine Approximationen”, Rendiconti Circ. Math. Palermo, 50 (1926), 170–195 | DOI

[4] D. Kleinbock, “Extremal supspaces and their submanifolds”, GAFA, 13:2 (2003), 437–466 | DOI | MR | Zbl

[5] D. Kleinbock, “An extension of quantitative nondivergence and applications to Diophantine exponents”, Trans. Amer. Math. Soc., 360 (2008), 6497–6523 | DOI | MR | Zbl

[6] J. Lesca, “Sur un résultat de Jarník”, Acta Arith., 11 (1966), 359–364 | MR | Zbl

[7] N. G. Moshchevitin, “Khintchine's singular Diophantine systems and their applications”, Russian Mathematical Surveys, 65:3 (2010), 43–126 | DOI | MR | Zbl

[8] N. G. Moshchevitin, “Best simultaneous approximations: Norms, signatures, and asymptotic directions”, Math. Notes, 67:5 (2000), 618–624 | DOI | MR | Zbl

[9] N. Moshchevitin, “On Kleinbock's Diophantine result”, Proc. Math. Debrecen, 2009, 2011 (to appear) , arXiv: 0906.1541 | MR | Zbl

[10] W. M. Schmidt, “On badly approximable numbers and certain games”, Trans. Amer. Math. Soc., 123 (1966), 178–199 | DOI | MR | Zbl

[11] W. M. Schmidt, Diophantine Approximations, Lect. Not. Math., 785, 1980 | Zbl

[12] Y. Zhang, “Diophantine exponents of affine subspaces: The simultaneous approximation case”, J. Number Theory, 129:8 (2009), 1976–1989 | DOI | MR | Zbl