Badly approximable vectors in affine subspaces: Jarn\'{\i}k-type result
Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 77-84
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider irrational affine subspace $ A\subset \mathbb{R}^d$ of dimension $a$.
We prove that the set
$$
\{\xi =(\xi_1,...,\xi_d) \in { A}:\quad
q^{1/a}\cdot
\max_{1\le i \le d} ||q\xi_i|| \to \infty,\quad
q\to \infty\}
$$
is an $\alpha$-winning set for every $\alpha \in (0,1/2]$.
@article{CHEB_2011_12_2_a9,
author = {Nikolay Moshchevitin},
title = {Badly approximable vectors in affine subspaces: {Jarn\'{\i}k-type} result},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {77--84},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a9/}
}
Nikolay Moshchevitin. Badly approximable vectors in affine subspaces: Jarn\'{\i}k-type result. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 77-84. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a9/