Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2011_12_2_a21, author = {Antanas Laurin\v{c}ikas and Renata Macaitien\.{e} and Darius \v{S}iau\v{c}i\={u}nas}, title = {Joint universality for zeta-functions of different types}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {192--203}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a21/} }
TY - JOUR AU - Antanas Laurinčikas AU - Renata Macaitienė AU - Darius Šiaučiūnas TI - Joint universality for zeta-functions of different types JO - Čebyševskij sbornik PY - 2011 SP - 192 EP - 203 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a21/ LA - en ID - CHEB_2011_12_2_a21 ER -
Antanas Laurinčikas; Renata Macaitienė; Darius Šiaučiūnas. Joint universality for zeta-functions of different types. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 192-203. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a21/
[1] B. Bagchi, The statistical behavior and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcuta, 1981
[2] B. Bagchi, “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334 | DOI | MR | Zbl
[3] P. Deligne, “La conjecture de Weil”, Inst. Hautes $\acute{E}$tudes Sci. Publ. Math., 43 (1974), 273–307 | DOI | MR
[4] J. Genys, R. Macaitienė, S. Račkauskienė, D. Šiaučiūnas, “A mixed joint universality theorem for zeta-functions”, Mathematical Modelling and Analysis, 15:4 (2010), 431–446 | DOI | MR | Zbl
[5] S. M. Gonek, Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979 | MR
[6] A. Javtokas, A. Laurinčikas, “The universality of the periodic Hurwitz zeta-function”, Integral Transforms and Special Functions, 17:10 (2006), 711–722 | DOI | MR | Zbl
[7] A. Javtokas, A. Laurinčikas, “A joint universality theorem for periodic Hurwitz zeta-functions”, Bull. Austral. Math. Soc., 78:1 (2008), 13–33 | DOI | MR | Zbl
[8] R. Kačinskaitė, A. Laurinčikas, “The joint distribution of periodic zeta-functions”, Studia Sci. Math. Hungarica, 48:2 (2011), 257–279 | MR
[9] J. Kaczorowski, “Some remarks on the universality of periodic $L$-functions”, New Directions in Value Distribution Theory of Zeta and $L$-functions, eds. R. Steuding, J. Steuding, Shaker Verlag, Aachen, 2009, 113–120 | MR | Zbl
[10] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR
[11] A. Laurinčikas, “The joint universality for periodic Hurwitz zeta-functions”, Analysis (Munich), 26:3 (2006), 419–428 | MR | Zbl
[12] A. Laurinčikas, “Voronin-type theorem for periodic Hurwitz zeta-functions”, Matem. Sb., 198:2 (2007), 91–102 (in Russian) | DOI | Zbl
[13] A. Laurinčikas, “The joint universality for periodic Hurwitz zeta-functions”, Izv. RAN, Ser. Matem., 72:4 (2008), 121–140 (in Russian) | Zbl
[14] A. Laurinčikas, “The joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3:11 (2008), 169–187 | MR | Zbl
[15] A. Laurinčikas, “Joint universality of zeta-functions with periodic coefficients”, Izv. RAN, Ser. Matem., 74:3 (2010), 79–102 (in Russian) | MR | Zbl
[16] A. Laurinčikas, R. Garunkštis, The Lerch zeta-function, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl
[17] A. Laurinčikas, R. Macaitienė, “On the joint universality of periodic zeta-functions”, Matem. Zametki, 85:1 (2009), 54–64 (in Russian) | DOI | MR | Zbl
[18] A. Laurinčikas, K. Matsumoto, “The joint universality and the functional independence for Lerch zeta-functions”, Nagoya Math. J., 157 (2000), 211–227 | MR | Zbl
[19] A. Laurinčikas, K. Matsumoto, “The universality of zeta-functions attached to certain cusp forms”, Acta Arith., 98 (2001), 345–359 | DOI | MR | Zbl
[20] A. Laurinčikas, K. Matsumoto, “The joint universality of twisted automorphic $L$-functions”, J. Math. Soc. Jap., 56:3 (2004), 923–939 | DOI | MR | Zbl
[21] A. Laurinčikas, K. Matsumoto, “Joint value distribution theorems on Lerch zeta-functions, III”, Analytic and Probab. Methods in Number Theory, Proc. $4^{\rm th}$ Intern. Conf. in Honour of J. Kubilius, eds. A. Laurinčikas et al., TEV, Vilnius, 2007, 87–98 | MR | Zbl
[22] A. Laurinčikas, K. Matsumoto, J. Steuding, “The universality of $L$-functions associated with new forms”, Izv. RAN, Ser. Matem., 67:1 (2003), 77–90 (in Russian) | MR | Zbl
[23] A. Laurinčikas, S. Skerstonaitė, “A joint universality theorem for periodic Hurwitz zeta-functions, I”, Lith. Math. J., 48:3 (2008), 287–296 | MR
[24] A. Laurinčikas, S. Skerstonaitė, “Joint universality for periodic Hurwitz zeta-functions, II”, New Dirrections in Value Distribution Theory of Zeta and $L$-functions, eds. R. Steuding, J. Steuding, Shaker Verlag, Aachen, 2009, 161–170 | MR
[25] A. Laurinčikas, D. Šiaučiūnas, “Remarks on the universality of periodic zeta-function”, Matem. Zametki, 80:4 (2006), 561–568 (in Russian) | MR | Zbl
[26] H. Mishou, “The joint value distribution of the Riemann zeta-function and Hurwitz zeta functions”, Lith. Math. J., 47:1 (2007), 32–47 | DOI | MR | Zbl
[27] T. Nakamura, “The existence and non-existence of joint $t$-universality for Lerch zeta-function”, J. Number Theory, 125:2 (2007), 424–441 | DOI | MR | Zbl
[28] J. Steuding, Value Distribution of $L$-Functions, Lecture Notes Math., 1877, Springer-Verlag, Berlin–Heidelberg–New York, 2007 | MR | Zbl
[29] S. M. Voronin, “Theorem on the “universality” of the Riemann zeta-function”, Izv. Akad. Nauk SSSR, Ser. matem., 39 (1975), 475–486 (in Russian) | MR | Zbl
[30] S. M. Voronin, “The functional independence of Dirichlet $L$-functions”, Acta Arith., 27, 493–503 (in Russian) | MR | Zbl